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ABSTRACT 

The thesis compares the analytical solution, two marine classification society design 
rules, and two design guides against experimental results for predicting the failure modes 
(general instability, axisymmetric buckling, and asymmetric collapse of the shell [lobar 
buckling]) and failure pressures of ring-stiffened cylinders 

The analytical solution is first summarized based on several sources. The design rules for 
the classification societies and the design guidance from two sources are then presented with 
brief explanations for each one. The design rules used are: American Bureau of Shipping (Rules 
for Building and Classing Underwater Vehicles, Systems, and Hyperbaric Facilities, 1990) and 
Germanischer Lloyd (Rules for Underwater Technology, 1988). The design guides used were 
Society of Naval Architects and Marine Engineers (Submersible Vehicle Systems Design, 1990) 
and Massachusetts Institute of Technology Course 13A Professional Summer Notes (MIT 13A 
Submarine Design Trends, 2001). 

The United States Navy Naval Sea Systems Command, Submarine Structural Integrity 
Division supplied experimental data for four cylinders that covered the failure modes and 
allowed comparison between experiment and design rules / guidance. 

The comparison of experimental to predicted data found that the design codes and design 
guides performed adequately in predicting axisymmetric yield and asymmetric buckling. The 
performance of the design codes and guides in predicting failure by general instability was 
unsatisfactory. For the experimental failures by general instability, the design codes and guides 
predicted significantly higher failure pressures than those experimentally determined; resulting in 
the design codes and guides actually predicting failure by axisymmetric yield in stead of general 
instability. These inconsistencies in the predictions of failure mode and pressures for general 
instability should be further explored to determine causes and corrections. 
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Chapter 1: Introduction 

The widespread use of stiffened cylinders in the marine industry has generated many 

studies into the stability and failure of these cylinders and methodology for failure prevention. 

Of primary concern to entities involved with the use of manned submersible vehicles is the 

design of ring-stiffened cylinders; this type of stiffened cylinder is used for significant portions 

of the pressure hull. Over a hundred years of theoretical and experimental research has led to a 

general understanding of the mechanics of failure for these cylinders. Based on this research, 

marine Classification Societies, such as the American Bureau of Shipping (ABS), the American 

Petroleum Institute (API), NORSOK and Germanischer Lloyd (GL) have promulgated design 

rules to provide guidelines on the design and building of stiffened cylinders for safe operation. 

Other design and analysis theories and guidance are available in texts such as those published by 

the Society of Naval Architects and Naval Engineers (SNAME). 

1.1 Failure Types 

There are three primary types of failure of ring-stiffened cylinders. They are 

axisymmetric yielding (AY) of the shell between stiffeners, asymmetric buckling of the shell 

between stiffeners (Lobar), and general instability of the shell and stiffeners (GI). Axisymmetric 

yield generally occurs when the shell is relatively heavy and the frames are closely spaced. 

Lobar buckling can occur when the shell is relatively light and the frames are strong and widely 

spaced. General Instability can occur when the cylinder is relatively long, the shell is thin and 

the frames are small. General Instability is very dependent upon eccentricities in the shell, which 

tend to lower the cylinder's resistance to the General Instability mode. [1] 



As analyzed here General Instability is presumed to occur in the elastic region of the 

stress - strain curve of the material. Cylinders also fail by inelastic General Instability, which 

occurs at significantly lower pressures than that of elastic General Instability. Failure by this 

mode is not addressed by the design rules. Other modes of failure also exist such as multi-wave 

instability, which is a sub-type of General Instability. It can occur in both the elastic and 

inelastic regions. Again the design rules do not address this failure mode. Several of the 

classification societies address stiffener tripping, which is the rotation of a stiffener away from 

perpendicular with the shell, however stiffener tripping is usually a precursor to general 

instability and is not a separate major failure mode. 

1.2 Concept Exploration 

For this thesis, an emphasis was placed on exploring how the various design rules 

predicted failure of cylinders that replicate modern submarine design (i.e. the shell was relatively 

thick compared to the diameter of the cylinder). This was facilitated by experimental failure data 

from the U.S. Navy's Naval Sea Systems Command (NAVSEA) Submarine Structural Integrity 

Division. The analysis was limited to ring-stiffened cylinders to remain consistent with the 

primary concern of the thesis. The test cylinders that were chosen had failed in all three possible 

modes, allowing for comparison of the design rules in all modes of failure.   . 

1.3 Analysis Techniques 

For the analyses, the design rules for the various classification societies and design 

guidance were programmed into MATHCAD™ for consistency of approach, ease of symbolic 

representation, and quickness of computations. The analytical solution was also programmed 

into MATHCAD™ for comparison. The experimental data from the four test cylinders were 



then input into each computer code. The codes gave a failure pressure for each type of failure. 

The lowest calculated pressure was then considered the failure pressure and the corresponding 

mode was designated the failure mode. The failure modes and pressures were then compared 

against the experimental results with emphasis placed on agreement between codes and 

experiment on failure mode (first priority) and then failure pressure (second priority). If a 

different failure mode was predicted than that experimentally found for a particular cylinder, an 

analysis was performed for agreement between predicted failure pressures and also the closeness 

of the failure mode pressures. 

1.4 Design Rules and Guides Examined 

There were two classification society design rules examined: The American Bureau of 

Shipping (rules from Rules for Building and Classing Underwater Vehicles, Systems and 

Hyperbaric Facilities, 1990 Edition) (reference 2) and Germanischer Lloyd {Rules for 

Underwater Technology, 1988 Edition) (reference 3). Design guides included: The Society of 

Naval Architects and Marine Engineers (SNAME) {Submersible Vehicle Systems Design, 1990) 

(reference 4) and the Massachusetts Institute of Technology (MIT) Course 13A Professional 

Summer (13A PS) Submarine Design Trends Course notes (reference 5) was also used. The 13A 

PS is based upon the 1967 version of the SNAME publication Principles of Naval Architecture 

(PNA) with some modifications determined by Harry Jackson (CAPT, USN Ret.). A third 

classification society, the American Petroleum Institute (API) was planned to be used, however 

the immediately available rules from API were not valid for the experimental data used. 

However, API does have rules to cover the types of cylinders examined here. 

Analytic solutions for the three failure modes were gathered from several sources. These 

sources included Hydrostatically Loaded Structures: The Structural Mechanics, Analysis and 



Design of Powered Submersibles by William Nash (reference 6), Principles of Naval 

Architecture, 1967 edition (reference 1), a David Taylor Model Basin technical paper by J.G. 

Pulos and V.L. Salerno (reference 7), and several journal articles from the Transactions of The 

Royal Institution of Naval Architects by S. Kendrick (reference 8) and C. T. F. Ross (reference 

9). 

In Chapter 2 a brief discussion on the terminology of ring-stiffened cylindrical shells is 

produced along with a short derivation of the basic stresses in these cylinders. Chapter 3 

contains the summary of analytic solutions used to predict failure (the solutions are not re- 

derived), Chapter 4 has the summary of the design rules and guides from the various sources. 

Chapter 5 describes the test cylinders and then compares the results from experiment to the 

results predicted by the design rules and guides. Chapter 6 summarizes the results with 

recommendations for further study. 
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Chapter 2: Overview of Ring-Stiffened Cylindrical Shells 

Ring-stiffened cylinders are the prevalent construction type in the mid-bodies of modern 

submersibles. The stiffeners provide additional strength to the shell that is required for the 

pressure differential between the external hydrostatic pressure and the internal, approximate 

atmospheric pressure. [6] 

2.1 Terminology 

The various classification societies use slightly different terminology for the cylinder 

geometries and properties. In the computerized design rules, the symbols used by each 

classification society are generally used to avoid confusion between the published code and the 

programs. All of the codes require computation of the moment of inertia (I) of the ring stiffener 

and the moment of inertia (Ie) of an effective ring stiffener (the frame and some length of 

attached shell). The formulas for I and Ie came from [10]. 

The terminology can be divided into two categories: material properties and geometry. 

All stresses and pressures are in pounds per square inch (psi), lengths are in inches (in), areas are 

in square inches (in2) and moments of inertia are in inches to the fourth power (in4). 

2.1.1 Material Properties 

1) Modulus of Elasticity (E): The slope of the linear region of the stress-strain curve of a given 

material. For all of the calculations a value of 3 X 107 psi (a common value for steel) was used. 

2) Poisson's Ratio (v or u): The ratio of lateral strain to axial strain in a material. For all 

calculations, a value of 0.3 (a general figure for steel) was used. 

11 



3) Yield Strength (o\ or fy or k): An arbitrary value for materials marking the onset of plastic 

deformation of a material. This is usually considered the point of 0.2% permanent strain. This 

value is of primary concern in the axisymmetric yield calculations. This parameter ranged in 

value from 65,500 psi to 157,000 psi. 

2.1.2 Geometry 

2.1.2.1 Cylinder Geometry (see Figure 1) 

1) Cylinder Length (L or Lb or Lc): Overall length of the cylinder between supports. This varies 

by cylinder and is of primary concern for General Instability calculations 

2) Shell Mid-plane Radius (R): Radius from centerline of cylinder to the shell mid-plane. 

3) Shell plate thickness (t or tp or s or h): Thickness of the cylinder shell plating. 

2.1.2.2 Stiffener Geometry (see Figure 1) 

1) Length between Stiffeners (L or Lf or Ls): Distance between centerlines of adjacent stiffeners. 

This distance was assumed to be constant for each cylinder. This dimension is important for 

both Axisymmetric Yield and Lobar Buckling. 

2) Web Height (hw): Length of the web for 'T' stiffeners or the height of the stiffener for 

rectangular stiffeners. 

3) Web Thickness (tw): Thickness of the web for T stiffeners or the thickness of the stiffener for 

rectangular stiffeners. 

4) Flange Breadth (bf): Width of the flange for T stiffeners. This value is set to zero for 

rectangular stiffeners. 

5) Flange Depth (d): Thickness of the flange for T stiffeners. This value is set to zero for 

rectangular stiffeners. 
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6) Stiffener Depth (H): The distance from the shell to the end of the stiffener. This is the 

stiffener height for rectangular stiffeners and the web height plus the flange depth for 'T' 

stiffeners. 

7) Faying Length (b): The distance of contact of the stiffener to the shell. It is equal to the flange 

width for 'T' and rectangular stiffeners; if T'-beam or wide-beam (WF) stiffeners are used, then 

equal to the flange breadth in contact with the shell. 

8) Effective Length of the Shell (Le): A length of shell to be considered as part of the combined 

stiffener and shell used in the General Instability analyses. This length is usually a fraction of 

the stiffener spacing, but many times will be equal to the stiffener spacing. 

9) Area of the stiffener (A): Cross-sectional area of the stiffener. 

10) Effective Area of the stiffener (Aeff): Cross-sectional area of the combined stiffener and 

effective length of shell or a modified area of the stiffener (A) based on the location of the 

stiffener. 

11) Moment of Inertia (I): Area moment of inertia of the dedicated stiffener, used by some codes 

as part of the calculation for the effective moment of inertia. 

12) Effective Moment of Inertia (Ieff): Area moment of inertia for the combined stiffener and 

shell, used for General Instability calculations. 

13 



Figure 1: Cylinder and Stiffener Geometry 

2.2 Classification of Stiffeners 

There are several methods to classify stiffeners. Of importance to the analysis of 

cylinders is the location of the stiffener: either internal or external to the cylinder shell. Both 

types are used for cylinder construction; slight modifications to the design rules (concerning 

effective areas and moments of inertia) are required based on the location. External stiffeners of 

equal size to internal stiffeners require more material because of the greater circumferential 

length but offer the advantage of freeing spacing within the cylinder for equipment / living space. 

[5] 
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Another classification of stiffeners are field (light / non-heavy) and heavy (king frame) 

stiffeners. Heavy stiffeners are substantially larger than the field stiffeners and are used to 

reduce the effective length of the cylinder for general instability concerns. Field stiffeners are of 

uniform size, shape, and spacing. For the current analyses no heavy stiffeners were used. 

2.3 Stresses in Cylinders 

A brief discussion of stresses in cylindrical shells is required to setup the derivation of 

the structural mechanics in support of the analytical solution. As a starting point, a cylinder can 

be considered a thin-walled structure (shell) if the ratio of the mid-plane radius to the wall 

thickness is greater than ten. This assumption allows the determination of the stresses by statics 

alone. [10] All of the cylinders considered are treated as shells. A second assumption in the 

analysis is to consider the hydrostatic pressure as constant across the cylinder. 

Cylindrical shells, exposed to hydrostatic pressure, have two basic stresses imposed by 

the pressure: hoop stress and axial stress. The equations for the stress are: 

1) Hoop (circumferential) Stress:       <JH=^—- (1) 

2) Axial Stress: ^ = — (2) 
*      It 

Where p is the external pressure, R is the shell mean radius and t is the shell thickness. Figure 2 

shows the derivation of these two equations. 

The addition of ring stiffeners to the base shell complicates the hoop stress analysis by 

introducing non-uniform deformation of the shell in the radial direction. There is also a beam- 

column effect due to the pressure acting in the axial direction. These effects will be addressed in 

Chapter 3. 
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Figure 2: Basic Cylindrical Shell Stresses 
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1) Axial Stress 

Axial force on a vertical section of the cylinder must equal the axial stress times the 

circumferential area. 

Force balance:   P-TI-R
2
    = 2-Tt-R-t- 'axial 

Which results in: 

PR 
aaxial~  2.t 

2) Circumferential (Hoop) Stress 

The force on a transverse section of shell, with width b must equal the hoop stress times the shell 

area. 

Force balance:    p-2-R-b   = 2-b-t-o hoop 

Which results in: 

PR 
hoop • 
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Chapter 3: Analytic Solutions 

Analytic solutions have been proposed and proven for the three major failure modes of 

stiffened cylinders. This chapter briefly describes the theories and equations used in the 

experimental analyses. 

3.1 History of Analyses 

The failure of cylinders exposed to external pressure has been studied for almost 150 

years. The first attempts at understanding cylinder behavior was done by experiment and 

empirical relationships in the 1850's.[6] The first analytic solution for a non-reinforced cylinder 

was presented by G. H. Bryan in 1888.[9] The first analysis of a reinforced cylinder appeared in 

1913 by R. V. Southwell, followed a year later by a solution to the elastic buckling of a thin shell 

proposed by von Mises.[6] In 1934 Widenburg proposed a solution for asymmetric buckling that 

is independent of the number of lobes of failure. [6] This equation is the one used in the current 

analysis. Solutions for axisymmetric yield were first put forward by von Sanden and Günther in 

1920.[9] Viterbo presented a modified version of Sanden and Günther's solution in 1930.[9] 

Pulos and Salerno presented a solution that included the Sanden and Günther solution, the 

Viterbo modification and a term to account for the bending stress in the cylinder caused by the 

axial pressure.[9] The Pulos and Salerno solution is used in this thesis. For elastic general 

instability, the first reported analysis was presented by Tokugawa in 1929. In 1954 A. R. Bryant 

developed a similar equation using a different methodology. [6] 

Analytical work from the 1950's onward has focused on obtaining solutions for different 

boundary conditions and more fully reconciling the analytic predictions with experimental 

results and to more fully understand the effects of initial imperfections in the cylinder's material 

17 



and geometric properties. With the advent of power digital computers and the use of finite 

element analysis there has been great strides made in understanding the failure of cylinders. 

3.2 Current Theory 

For this thesis, analytic solutions were collected from several sources for the modes of 

failure. A comprehensive theoretical solution that addresses all modes of failure is not presented. 

Reference 6 provides a good summation of the currently used analytic solutions. 

A first indicator of the failure mode of a cylinder is found by plotting the cylinder's 

slenderness ratio (k) against the ratio of the shell buckling pressure(pc) to the hoop pressure at 

yield(py) (\|/).[1] The equations for these factors are given below. 

X=—° 
—     (n \2 

(3) 

D 

Pc 
V-- (4) 

Figure 3 shows the plot of y versus X. If the slenderness ratio is less than approximately 1.14 the 

cylinder should fail by axisymmetric yield; if I is greater than 1.14 then the cylinder should fail 

by lobar buckling. If the shell and stiffeners are not of sufficient size, the cylinder may fail by 

general instability at a pressure less than that found in Figure 3.[1] By using two assumptions 

(the material is steel with v = 0.3 and Ls/D » tp/D) it can be shown that: [1] 

1.30 

This is the buckling part of the curve in Figure 3. 
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Figure 3: Failure Pressure Ratio versus Slenderness Ratio 
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The treatment of boundary / end conditions of the cylinder is a vitally important factor in 

the analytic solutions. The literature is full of discussion on what types of end condition to use, 

with the choices ranging from full clamped ends to simply supported ends. The extreme cases 

are hard to create in reality and therefore the experimental results tend to fall between the ranges 

of predictions. Experiments have shown that partially clamped cylinders provide significantly 

higher failure pressures than that predicted by mathematical models utilizing simply supported 

ends.[8] For this thesis, no discrete boundary conditions were required to be stated for input into 

the equations. 

3.2.1 Axisymmetric Yield 

As mentioned in section 3.1 axisymmetric yield has been studied since the 1920's. The 

solution summarized here was put forward by Pulos and Salerno in 1961. It is based on the 

previous works of van Sunden and Günther and Viterbo and includes a previously not included 

"beam - column" effect due to the hydrostatic pressure acting in the axial direction of the 

cylinder.[7] The governing differential equation is: 
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D 

/ \ 
d4 

Vdx     / 2    dx2 

Et 
w + w 

R2 

pi (6) 

Where: 

D:= 
Et 

>(.-v') 

D is the flexural rigidity of the shell 
12 

The term JL.  represents the beam - column effect. It makes the solution to equation (6) a non- 

linear function of pressure and was the term neglected in the earlier analyses of axisymmetric 

yield. Figure 4 shows the coordinate system used in reference 7 to derive the governing 

equation, x, (p, and r are the axial, circumferential and axial coordinates respectfully with u, v, 

and w being the corresponding displacements. [7] 

Figure 4: Coordinate System for a Cylindrical Shell 
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Following typical practice in the solution of non-homogeneous differential equations the 

general solution of the governing equation can be written as the sum of the solution of the 

homogeneous equation and a particular solution. [6] The solution to the homogeneous equation 

produces four roots (A4-A4). By analysis, placement of the origin of the coordinate system to take 

advantage of symmetry, and trigonometric identities, the general solution can be given as: 

w— i? cosh/l,x + F cosh/Lx (1 ) 1 ^        Et 2 
(7) 

where B and F are arbitrary constants which can be found by applying boundary conditions to 

the equation.[7]. After further mathematical substitutions several dimensionless parameters were 

introduced into the solution to allow easier solving of the problem. Four of these parameters (Fi- 

F4) were transcendental functions based on the geometry of the cylinder. These functions were 

originally graphed to allow for a relatively quick solution to be found for a given cylinder. 

Finally an equation for the failure pressure of a given cylinder was determined. This equation 

along with the dimensionless parameters is given below. 

Pc'= 

yU 
+ denoml - denom2 

(8) 

Where: 

denoml := A F2
2 + F2.F4-(l-2-p)- 

denom2 := | — |A- F2 - H-F4- 
0.91 

f I   0.91  ^ 
+ F4

2-(l - n + n2). 
'   0.91  ^ 

2 

l-n 
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A 

y:= 

a 

a + ß + (l-ß)-F, 

2-E 
[tt^)lß 

1   i  
Tii :=—-vi -y 

n2:=-VTT^ 

fcuv). 
R-t 

Fl:=- 
coshfrij-0)   -COS(TI2-ö) 

F2:= 

F3:= 

9   cosh^j-eJ-sinh^Ti j-e)      cos(r]2-0)sin(ri2-0) 

cosh^Ti ,e)sin(ri2e)      sinh(r| ^eVcosfojo) 

 ^2 nj  

cosh(tij-ej-sinh^,-e)      cosfr|2e)sin(Ti2e) 

Til T)2 

cos(ti2e)sin(T}2e)      cosh^Tij-eJ-sinh^Ti j-e) 

~ Tl2 ^1 

F4:= 

Jl-u2   cosh(Tlr0)sinh(Tli-0)      cos^2eVsinfTi2-0) 

Til Tl2 

cosh^Ti j-e)sin^Ti2e)      sinhfri j9)cos(r|2e) 

2   cosh^j-ejsinh^Tij-ej      cos(Ti2-0)sin(r|2-0) 

Tii n2 

An iterative process is required for the general case where the parameter y is not zero. The 

process begins with assuming that y is zero, finding the failure pressure then recalculating y and 
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solving the equations for the failure pressure again. Usually only two to three iterations are 

needed for satisfactory convergence of the failure pressure. [7] 

3.2.2 Asymmetric Buckling (Lobar Buckling) 

Asymmetric buckling is characterized by circumferential lobes between ring stiffeners. 

As noted above this mode of failure will occur when the cylinder's slenderness ratio is relatively 

high. This can be further characterized by a relatively thin shell thickness and widely spaced 

stiffeners.fi] R. von Mises first proposed a solution to the buckling of un-stiffened cylinders 

under hydrostatic pressure in 1929. He assumed sinusoidal displacements in the axial and 

circumferential directions to enable solving of a set of linearized partial differential equations 

that represented the elastic action of the shell. [6] He eventually obtained the following equation 

for the buckling pressure: 

vm R 
2      J n-R 

n   + .5 
L 

m + 

2 
n   + (T)1 

2 
:-(,-,2) 12 

2 n   + 
7T-R 

(9) 

The buckling pressure is dependent upon the number of circumferential lobes (n), which must be 

an integer value. This fact requires an iterative process of varying n until the lowest pressure is 

determined. 

In 1933 Widenburg solved the above equation in way that was independent of n. From 

test data the buckling pressures from the von Mises equation and the Widenburg approximation 

differ by no more than 3.5%. [6]. Further investigation into the bucking of stiffened cylinders 

determined that the Widenburg equation worked very well by replacing the length of the cylinder 

by the length between stiffeners. Therefore the Widenburg equation (equation 10), shown 

below, is the equation used in the current analyses. 
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2.42 El — 

PLB= -D-     ,a,3 
(10) 

i-o.«(IU.^I 
D     ^D; 

3.2.3 General Instability 

General instability consists of the yielding of both the cylindrical shell and ring stiffeners. 

A cylinder may be susceptible when the stiffeners are undersized when compared to the shell 

thickness and the cylinder is relatively long.[6] General instability may occur in either the elastic 

or inelastic stress region of a material. Elastic general instability is the mode covered by the 

available literature and is addressed here. Inelastic general instability has been studied mainly by 

government laboratories and most of the knowledge of this failure mode is classified material 

and therefore unavailable to the present author. [11] 

The first analysis of general instability was presented by T. Tokugawa in 1929. [6] His 

methodology considered the failure as a combination of the failure of the ring stiffeners and shell 

buckling with each taking place separately. [9] In the 1940's S. Kendrick used a strain energy 

methodology to determine the failure pressure. In 1953 A. R. Bryant used a simpler strain 

energy method and determined an equation similar to both Kendrick's and Tokugawa's. [1, 9] 

The Bryant equation is therefore used for this analysis and is shown below as equation 10. 
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■< (n2-l).E.L E-t X v"   ~ l'^le 

R PGi-   -7 ^ : + —  (11) 

2     ,      I 
n   - 1 + — 

V 2; 
.(■^r R3-L 

Where: 

h 

The first term can be considered the failure of the shell and the second term can be 

considered the failure of a combined stiffener and an effective length of shell. [6] This effective 

length has had much discussion in the literature over the decades. Bryant assumed the length to 

be the spacing between the stiffeners, but others have proposed various corrections based on the 

cylinder's geometric and material properties.[5] For this thesis, the effective length used was the 

stiffener spacing. 

Similar to the von Mises buckling pressure determination, the number of circumferential 

lobes (n) must be found that minimizes the failure pressure. The number of circumferential lobes 

is usually between 2 and 4. [5] The factor X is the number of longitudinal lobes in the cylinder. 
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Chapter 4: The Design Rules and Analysis Tools 

The two classification societies' design rules that were utilized were the American 

Bureau of Shipping and the Germanischer Lloyd rules. These were chosen for their availability, 

their different levels of simplification of equations, their coverage of the specific geometries of 

the experimental cylinders, and their inclusion of all three failure modes. The Society of Naval 

Architects and Marine Engineers Submersible Vehicle Systems Design and Principles of Naval 

Architecture (PNA) were chosen for analysis as SNAME is the primary design society in the 

United States and has comprehensive guidelines for cylinders. The MIT 13A Professional 

Summer Submarine Design Trends notes were used because of the author's familiarity and the 

complete analysis of the failure modes. 

4.1 American Bureau of Shipping (ABS) 

The ABS design rules, as delineated in the Rules for Building and Classing Underwater 

Vehicles, Systems and Hyperbaric Facilities (1990), give a brief and conservative approach for 

determining the critical / collapse pressures for each failure mode. The ABS design rules do not 

explicitly name the failure modes, but there are distinct equations for the three modes. 

4.1.1 Axisymmetric Yield 

This mode is designated the yield pressure at midbay and midplane of a cylinder. [2] The 

formula accounts for the major parts of the analytic solution, but uses single value functions for 

the shell parameters and does not explain the functions of each part of the equation. The rules do 

account for the difference between internal and external frames by squaring the mid-plane radius 

to stiffener radius ratio for external stiffeners. The base equation follows: 
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Where 

t 
a. 

y   l-F (12) 

A- 

F:=- 

1--I-G 
V       2 

A + tw-t + 
2N-1-L 

e 

A:=AS- 

A:=A_ 

R 
—     Internal Stiffeners or 

External Stiffeners 

9:: :[,(- 4 •M 

M:= 
Rt 

Q:= 

cosh(2Q)-cos(2Q) 

sinh(2Q) + sin(2Q) 

„ (sinh(Q)cos(Q) + cosh(Q)sin(Q)) 

sinh(2Q) + sin(2Q) 
G:=2- 

H: 
_ sinh(2Q) - sin(2Q) 

sinh(2Q) + sin(2Q) 

4.1.2 Asymmetric Buckling 

This is called the Von Mises buckling pressure for a cylinder. It is the Widenburg 

approximation that is used by most of the classification societies. 
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2.42-E- 

v= 2-R 

(.-.') 
2-R 

0.45 
f   t   Cl 

2-R 

(13) 

The ABS code then has a range of allowable pressures depending upon the ratio of Pm to 

Py. Below is the logic for the maximum allowable working pressure for inter-stiffener strength 

(Pc). Further safety factors are then applied to lower the allowable pressure in practice. 

v= 
p p m   .„    m 
    if < 1 

2 P 
y 

/ 

v 

P   ^ y 

2-R 
my 

m 
if 1 < — < 3 

py 

5 „ rm 
-P     if — > 3 
6  y     Py 

4.1.3 General Instability 

For the elastic general instability, the ABS code uses the Bryant equation with an 

effective length not equal to one frame space. The effective length is given below. 

L  := min 
'U-A/RT 

.   0.75 L„   . 
V s / 

The equation for the failure pressure is broken into three parts, but the 

total is equivalent to the Bryant formula. 

E-t EIe"A2(") 

R R3L (14) 

Where: 

29 



A,(n):= 

A,(n) + —    \n   + X ] 
v 2; 

A2(n) := n   - 1 

X:-- 
7I-R 

4.2 Germanischer Lloyd 

The design rules for Germanischer Lloyd are from Rules for Underwater Technology 

(1988 edition). The rules address all three failure modes very thoroughly and flow charts are 

provided to aide in programming the code for computer use. These rules also address out-of- 

roundness up to a nominal value of 0.5% of the mid-plane shell radius by determining a reduced 

allowable pressure.[3] 

4.2.1 Axisymmetric Yield 

The code for axisymmetric yield resembles the Pulos and Salerno methodology with 

some additions to account for the transition of the material into the plastic range during yield. 

The methodology consists of first guessing a pressure lower than the failure pressure (the test 

cases used 1 psi as the starting point) then iterating through a series of equations to determine the 

shell stresses. If the determined shell stress becomes greater than 0.8 of the yield strength of the 

material, then a Secant Modulus of Elasticity (Es), a Tangent Modulus of Elasticity (E,) and a 

plastic range Poisson's Ratio (up ) is calculated and used to determine the other calculation 

factors. The determination of the integer m in equation (14) is described in the code below. 

Pm:-Paa'C0' 
,  Tim , 

1 
+ —■ 

4 

'   7im   > 

VarLU J (15) 
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Where: 

a, := 

4 

3- 
C2 C3 

v„  
P C, 

2 

> s' 
>    2 
•R 

2-s2-E„ 

Paa := ■ 
R2,J3.(,-vp

2 

Must iterate on the integer m until trial is < trial2. By meeting this condition the 

minimum failure pressure is found (with the minimum m). 

trial: 
CCJ-LJ 

trial2:= |— (m+ 1) 

H 1 + 2   -Hl-vp H4(H. 

Et 
1  

H4:= 

4-ll-Vp )K} 

2 _ 2 
Cr^-^Cs 

1 -v. 

Cl:= 

H2  H4 

H, 

31 



C2:= 

C3:= 

(       2    ^ 

1 - 
H3   H4 

V 
H 

/ 

(       H2H3H4^ 
1 + 

V 
VPH1 / 

C4 is not used for cylinders without heavy stiffeners. 

C5:=aLl 

Past:= 
2-s   E 

critical pressure, elastic, calculation factor 

p = 1 psi (arbitrary low pressure) 

This is the actual starting point of the iteration. A pressure (p) is guessed; the code then 

calculates the failure pressure. If the failure pressure is greater than the guessed pressure, the 

applied pressure is increased by a set amount. This continues until the two pressures, p and pm 

are within a chosen delta of each other. This is essentially the method of Pulos and Salerno with 

a simpler method for iterating on the presumed pressure. 

G:= 
Past 

C6:=--/rTG 

C^-VTTG 

C8 :- C5'C6 

C9:_C5C7 

cio:- 
(>-4- I       2) s-L, 

b      (        b 

s-L]      Lj v'-^Fl 
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0.91 
c„-  —-j 

■J 1 - v 

4 cosh (Cgj   - cos (CM 

CJ   cosh(Cgjsinh(Cg)      cos(C9J-sin(C9J 
 +  

C6 C7 

cosh(Cgjsin(CpJ      sinh(CgVcos(C9) 

C7 + C6 

cosh(Cg|sinh(Cgj      cos(C9Jsin(C9] 
  H  

C 
F2:= 

c7 

cos 

J3 l^T C, 

—I- 
1-v 

;(c9)sin(c9)      cosh(Cg)-sinh(Cg) 

C7 ^6  

coshlCgVsinhlCg]      cos(C9]sin(C9j 

% + a, 
cosh(Cgjsin(Co)      sinhlCglcoslCol 

C7 C6 

(Cg)sinh(Cg)      cos(c9)-sin(c9) 
 +  

r, r„ 

F .= l_Z Cn Q 

4|          2   cosh 1 1 -v       
C* c7 

The functions Fl through F4 are equivalent to those presented in the analytic solution. 

a := i —-—— shape factor 
s2-R2 

The following set of equations determines the stresses at the mid-bay of the shell. 

-p-R 
ao:= 

°x:= ao-( 2 + Cl0'Cl ^) Gxl := G°\ 2 ~ Cl0'Cl r?4 

V^of1 "C10F2+ vC10CllF4) °<t.l :=tv(! - C10F2 - vC10CllF4) 
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G<l> 

I    2 2 
°i:=Vax  + a<|>   -°xa<t> 

If the calculated stress is > 0.8k then the following equations are used to determine the 

material properties in the elastic - plastic region. The code is somewhat circular, the assumption 

was made to determine the strain (EI) from the previously calculated stress then to find a new 

stress level by the equation given in the code. 

cr := -K0-ox 

a:=k-   .8+ .2tanh{ 5—-e, -4| ] 

k 
£ := — 

E 
5 4 

V V    k 
0.8 + 0.2atanh 

E 
0.8+0.2-f tanhf 5- 

V       V    k 
E -4 

£,:=£ ( 1 -tanhf 
E 

5—E -4 
k 

1 (I ^ 
Es] 

vr. := —  — - - - V p _2 u J EJ 

KP=(>-K0+K0
: 

34 



4.2.2 Asymmetrie Buckling 

For asymmetric bucking the Germanischer Lloyd code uses a modified version of 

equation 9. Therefore the dependence upon the number of lobes is not removed and should give 

a better estimate of the buckling pressure. The equation is given below. 

Es-ßnl(n) 
Pnl(n):=- R (16) 

Where: 

P„i(n):= 

\- 2       2 ( 2 
c    An 

+ 1 

ri    ; 

s •  n   - 1 + A. 

12 R2.(,-v2) 

n   - 1 + .5-X 

7I-R 

4.2.3 General Instability 

For elastic general instability, the code uses the Bryant equation with the effective 

moment of inertia based upon the effective length of shell as defined: 

Letest^+V^ 

Letest  if Letest < Lj       where Li is the frame spacing 

Lj   otherwise 

The base equation for general instability also uses a modified radius (Ro) which is the radius to 

the centroid of the combined stiffener and effective length of shell. For this thesis no "heavy" or 

"king frame" stiffeners were used, however the code allows for these stiffeners with several 

more equations. 

Pnla(n):=Po(n) + Pl(") (17) 
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Where: 

P0(n) := 
Esßn2(n) 

R 

(n2-l)-E-Ie 

Pj(n):= 

*o\ 

Pn2(») 
h4 

(n2-l + 1.5.\2
2){n2 + \2

2) 

L:=L3 

rc- R 
A2:=T 

4.3 Society of Naval Architects and Marine Engineers (SNAME) 

The SNAME code was taken from Submersible Vehicle Systems Design (1990). SNAME 

is not a classification society as ABS and Germanischer Lloyd, but it does provide many of the 

professional and technical resource material for naval architects in the United States. The 

current codes are revised versions of those found in the SNAME publication Principles of Naval 

Architecture (1967 edition), reference 1. The code addresses all three modes of failure with the 

least complex set of equations of those under current study. 

4.3.1 Axisymmetric Yield 

For axisymmetric yield, the methodology simplifies the analytic solution by using the 

older theory of von Sanden and Günther instead of the solution put forward by Pulos and Salerno 

in reference 7. The methodology thus neglects the beam-column effect of the axial pressure. 

This is justified by designing the shell to yield vice buckle. [1] 
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f 
1 + H- 

'_R  

0.85-B 

1 + ß 

\ 

Where: 

(18) 

B: 
V* 

Ar + tw-t 

6 := 10-L12-U - |i 

cosh(e)-cos(e) 

sinh(e) + sin(e) 

4^V5atN   V2y f 

V2-Ry R 

N: 

UN t 

H:=- 

5olVAr+Vty 

R 

3-sinh| —   -cos   — | + cosh 
2 )       I 2 

^Q^        f a\\ 

\*/ 
sinh(e) + sin(e) 

4.3.2 Asymmetric Buckling 

For Lobar buckling, the code uses the Widenburg approximation equation that is 

independent of the number of failure lobes. This is the same as used by ABS. 

Pb:= 
2.42 E 

(,V) 

2R 

1 

2R -°'4<lJ. 

(19) 
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4.3.3 General Instability 

For general instability, the code uses the unmodified Bryant equation; therefore the 

length of shell used in the moment of inertia calculation is one stiffener spacing. The code 

suggests that the critical value of n is between 2 and 4. 

4 
t  rr 

R 

Et m
q l"   -Ij-E-L 

Pcr\(ny=— f        2^ 
2    ,     m 

n   - 1 + — 
V 2 j 

Where: 

(n2-,). 

(2       if 
An   + m / 

R   Lf 

(20) 

7T-R 
m:=  

Lb 

4.4 MIT 13A Professional Summer Submarine Design Trends 

The Professional Summer notes are a compilation of design theories from Harry Jackson 

(CAPT, USN, Ret.) used to instruct the MIT course 13A students in the basics of submarine 

design. The actual purpose of the code is to evaluate a proposed submarine design given depth 

and material criteria; some modifications were required to provide the failure pressures. The 

failure equations for lobar buckling and general instability are generally from reference 1, 

however some small modifications have been made. A complete stress calculation is included 

for axisymmetric yield. 

4.4.1 Axisymmetric Yield 

The majority of the modifications to the original code were made to allow calculation of 

a failure pressure for this mode. The beginning code provided a required diving depth and 

therefore a pressure to withstand. It then performed a von Mises stress analysis on the structure, 

resulting with a shell stress. This shell stress (after modification by a safety factor) was then 
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compared to the yield strength of the material for acceptability. The code was modified to iterate 

on the pressure, with the failure pressure designated as the pressure at which the calculated stress 

was equal to the yield stress (without any modifications by safety factors). There was no distinct 

equation for the failure pressure. The following is the code used to determine OSY, which is the 

shell stress. 

B:= 
tw'tp 

A + tw-tp Area ratio 

9 :=Lf 

(R-'P)
2 

_1_ 

n4 

N:= 
cosh(e) -cos(e) 

sinh(e) + sin(e) 

Slenderness Parameter 

Deflection coefficient 

p:=- 
2-N 

A + tw-tp 
-(.-v') 

0.25 f 

T:= 

1-- l-B 
V        2. 

1 + ß 

HM:=-2- 

.Je)    (e)       Je) . (Q 
sinn   —   -cos   —    + cosh   —   -sin  — 

\2)   yi)      \2)   U 
sinh(e) + sin(e) 

Frame flexibility parameter 

Frame deflection parameter 

Bending effect (mem) 

HE:=-2- 
(    3    ^ 

0.5 cosh   — sinh   —   -cos   — 
\2J 

sin 
K^J 

K:= 

\\-v  j 

sinh(e) - sin(e) 

sinh(e) + sin(e) 

sinh(e) + sin(e) 

The following begins the von Mises stress analysis. 

Bending effect (bend) 

Bending efffect near frame 
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G<J>(JE0 °— 
-PR r          / 

[i + r(HM 

°xxso:= 
-PR /                  x 
-—•(o.5+r-HE) 

°<t>(tBi := 
-PR  r                / 
—— [i + r-(HM 

lP 

°xxsi:= 
-PR /                 x 
 (0.5-r-HE) 

°xxfo:~ 

-PR 

-PR 

l-r 1 + v- 
(    3     \ 

0.5 

\J - v   / 
•K 

0.5 - r- 
(     3     ^ 

0.5 
■K 

<*<t><ffr 

üxxfi: 

-PR 

-PR 

l-r 1 - V 
(     3     ^ 

Vl-v 

0.5 

•K 

o.5+ r- (     3     > 

\\-v  j 

0.5 

•K 

asv := 

rn^.\ 

uxxso 

°xxsi 

CT«|»(|fi 

°xxfo 

V°xxfiy 

öl :=cjsy 
a2 := °sy 2 03:= asy 5 CT4 := asy 

°SYM r 2 
:=^CT]     -GJ-CT2 + 02 

^SYM^ 
asy:= ma> 

V0SYF 

GSYF := (^ 
2 2 

CT3   - a3,ar4 + CT4 

4.4.2 Asymmetrie Buckling 

The equation for lobar bucking is the same as that used by SNAME and ABS and the 

analytic solution; it is the Widenburg approximation: 
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2.42 E- 

PCLB:= 

ft  ^ 2.5 

tr 
 0.45   — U') 

0.75 
(21) 

4.4.3 General Instability 

For general instability, the Bryant equation is used with the effective length of shell given 

by the following method: 

Leff.= LcFi + tw 

Where 

Lc := Lf - tw  is defined as the clear length between the mid-bay and the stiffener 

4 
F,:=-- 

cosh m ] of - cos(ri2- s)2 

cosh(n j •0Jsinh(n ,e) cos(n2 
+  

•9Jsin(n2 

n2 

e) 

n! --O.S^jT n2: = 0.5-/T + y 

y:=- 
2-E 

^R^ 

\1PJ 
■ffTT) 

F\ is the first transcendental equation determined by Pulos and Salerno. The original 

methodology required the pressure as an input to first determine the 6 function (it is the same as 

for axisymmetric yield) and then Fi was found. To provide for a simpler method, a series of 

pressures that encompassed the predicted range of failure were input into the above equations 

and an average value of Fi was chosen from the resultant values. The Fi values changed by 

approximately + 0.05 for each test cylinder. The effective length was then used to calculate the 

moment of inertia for the combined shell and stiffener. The number of lobes was set to be 
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between 2 and 4; the failure pressure was then found without other modifications to the Bryant 

formula. 

PcGI 
Etr m M2~ Elcff 

W -'+ T w 2        2 
+ m 

R3Lf 

Where: 

(22) 

m:= n- 
Ls 
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Chapter 5: Experimental Results 

The various Classification Societies' design rules were tested against data collected from 

experiments conducted by the U. S. Navy in support of submarine design. Each society's design 

rules were used to determine the failure pressure and failure mode of each of the test cylinders. 

The resulting predictions were then compared to the experimental results. Of primary interest 

was agreement between the design rule prediction and experiment on the mode of failure, 

followed by the closeness of the predicted failure pressure to the actual collapse pressure. 

5.1 NAVSEA Test Cylinders 

The test data was provided by the Naval Sea Systems Command submarine structures 

unit (SEA 05P2). Four test cylinders were selected that covered the range of examined failure 

modes. The cylinder diameter to thickness ratios (D/t) fell between 112 to 198, modeling typical 

submarine D/t ratios. Two of the cylinders had internal stiffeners while the other two cylinders 

had external stiffeners. All four test cylinders had built-up end stiffeners with a combination of 

slightly different spacing and / or larger stiffener dimensions than the uniform field stiffeners. 

These end stiffeners were designed to prevent shell yielding in the end bays due to increased 

stress levels associated with the boundary conditions. It was estimated that without the end 

stiffeners a 4-5% reduction in axisymmetric yielding pressure could occur. None of the end 

stiffeners met the classification societies' requirement for a "deep" stiffener. None of the design 

rule codes allowed for these variable stiffeners, therefore the non-uniformities were disregarded 

and the end stiffeners treated as field stiffeners. The four cylinders are described below. 
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5.1.1 Cylinder l.d 

Cylinder l.d was a machined cylindrical shell with rectangular external ring stiffeners. 

The material was high strength steel with a yield strength of 80,000 psi. Figure 5 shows the 

schematic of the cylinder. The boundary conditions consisted of one end being fully fixed; the 

other end had all freedoms fixed except for axial displacement (these conditions conflict with the 

design rules assumption of completely clamped ends). External hydrostatic pressure was applied 

including axial line load to simulate load on the end plate. The experiment tested the ability of 

the design rules to predict elastic shell bucking (Lobar buckling). The experimentally 

determined collapse pressure was 633 psi with failure by asymmetric (Lobar) buckling. 

Appendix A has the analysis of predicted failure for this cylinder. 

Figure 5: Test Cylinder l.d Schematic 
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5.1.2 Cylinder l.f 

Cylinder l.f was a cylindrical shell with internal tee stiffeners of welded construction. 

The material was high strength steel with a yield strength of 98,500 psi. The boundary 

conditions consisted of 4.0 inch steel plates attached with full fixity to the end of the adaptor ring 

on the model. External hydrostatic pressure was applied. This test cylinder was used to predict 

failure by elastic general instability. There was no experimental elastic collapse pressure; 

therefore the critical pressure was calculated by two separate, reliable analysis programs with the 

results being 4858 psi (with 3 waves) and 4953 psi (with 3 waves). The test cylinder actually 

failed by inelastic general instability at a pressure of 2200 psi. Figure 6 shows the cylinder 

dimensions and Appendix B has the analysis of predicted failure for this cylinder. 

Figure 6: Test Cylinder l.f Schematic 
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5.1.3 Cylinder 2.a 

Cylinder 2.a was a machined cylindrical shell with external tee stiffeners. The material 

was high strength steel with a yield strength 65,500 psi. Figure 7 shows the schematic of the 

cylinder. The boundary conditions consisted of end closures made of 3.0 inch steel plates 

attached to the idealized adaptor ring with full fixity. External uniform hydrostatic pressure was 

applied to the model. This cylinder was used by the Navy to predict end bay failure (shell 

collapse influenced by end bay design). This is a specific example of axisymmetric buckling and 

was used as the axisymmetric model for the classification society rules. The experimental 

collapse pressure was found to be 921 psi by axisymmetric collapse in the second bay from the 

adaptor ring. Appendix C has the analysis of predicted failure for this cylinder. 

Figure 7: Test Cylinder 2.a Schematic 
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5.1.4 Cylinder 2.c 

Cylinder 2.c was a fabricated cylinder with internal ring stiffeners. The base material 

was high strength steel with a yield strength of 157,000 psi. Figure 8 shows the schematic of the 

cylinder. The shell was cold rolled and fabricated with a deliberate out-of-roundness 

imperfection. The frames were built-up. The frame web material was base metal, and the frame 

flanges were cold rolled. The boundary conditions consisted of one end being fully fixed with 

the other end having all freedoms except axial displacement. External uniform hydrostatic 

pressure with an axial end load to simulate end plate loading was applied. This test cylinder was 

used by NAVSEA to predict the inelastic general instability failure mode and to model out-of- 

roundness imperfections. In the current comparison the out-of-roundness was disregarded. The 

collapse pressure was experimentally found to be 3640 psi in 2 circumferential waves in an 

inelastic general instability mode. Appendix D has the analysis of predicted failure for this 

cylinder. 

Figure 8: Test Cylinder 2.c Schematic 
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5.2 Calculation to Experiment Comparison 

Table 1 shows the comparison of the classification societies' design rules to the 

experimental results. The table displays the calculated failure pressure and failure mode for each 

cylinder and the percent difference from the experimental failure pressure (if the experimental 

and calculated failure modes are the same). 

Table 1: Comparison of Design Rule Calculations to Experimental Results 

l.d l.f 2.a 2.C 
Pressure Mode Pressure Mode Pressure Mode Pressure Mode 

NAVSEA 

EPERIMENT 

633 L 2200 iGI 921 AX 3640 iGI 

Analytic 

Solution 

605 

-4.6% 

L 2141 AX 876 

-5.1% 

AX 4080 AX 

ABS 605 

-4.6% 

L 2039 AX 844 

-8.8% 

AX 4211 AX 

PNA 605 

-4 .6% 

L 1928 AX 815 

-12.1% 

AX 3864 AX 

Germanischer 

Lloyd 

606 

-4.5% 

L 2931 AX 1030 

12.4% 

AX 4567 AX 

13A Professional 

Summer 
605 

-4. 6% 

L 1994 AX 819 

-11.6% 

AX 3712 AX 

Key: L 

AX 

GI 

e/i 

Asymmetric (Lobar) Buckling 

Axisymmetric Yielding 

General Instability 

elastic / inelastic 

There is excellent agreement between the experimental data and the calculations for 

cylinder 1 .d. The Lobar buckling failure was expected as the slenderness ratio was 201, several 

magnitudes greater than the breakpoint of 1.14 between asymmetric and axisymmetric failure. 

The agreement between the design rules and the analytic solution calculations was expected as 

they all used the same formula to determine the lobar buckling pressure. The calculated failure 

pressure was 4% below the experimental pressure. The higher experimental critical pressure was 

attributable to the test cylinder being more fully clamped than theorized in the design rules. 
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Cylinder 2.a also generated agreement between the experimental data and the design rule 

calculations. The predicted failure mode of axisymmetric yield was confirmed by the 

experiment. However there were some significant differences between the predicted collapse 

pressure and the experimental failure pressure. All of the design rules, except for the 

Germanischer Lloyd, predicted failure at a pressure lower than that experimentally found. The 

Germanischer Lloyd calculation over estimated the failure pressure and was the furthest from the 

experimental pressure with a pressure 11.8% over the experimental pressure. This failure mode 

is the most dependent upon the yield strength of the material therefore a small variance between 

the given yield strength and the actual yield strength of the test specimen may have contributed 

to the differing pressures predicted by the design rules. All of the design rules use a simplified 

version of the methodology presented by Pulos and Salerno [7]. The Germanischer Lloyd and 

the modified Professional Summer calculations, perform an iterative operation to find the 

pressure, very close to the analytic methodology. The ABS and PNA calculations use single 

value equations substituted for the transcendental functions of the analytic solution. 

Cylinder l.f failed at 2200 psi experimentally in an inelastic general instability mode. 

The experiment was done to test the ability of NAVSEA's computer codes to predict elastic 

general instability. A predicted failure pressure of 4858 psi was determined for the elastic 

general instability mode. The design rule codes estimated the general instability failure pressure 

very well. Table 2 compares the design rules and analytic solution general instability pressures 

to the experimental failure pressure. The agreement between the design rules was expected as 

they all use the Bryant equation (equation 10) to determine the failure pressure. The only 

differences come from the variations in the effective length of the shell for the combined shell 

and stiffener calculations and small variations in the radius used in the equation. 
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Of further interest to cylinder 1 .f was that the design rules predicted failure by 

axisymmetric yielding at an average of 2206 psi.. As the cylinder actually failed by inelastic 

general instability the design code predictions indicate that the two modes of failure are very 

close together. This cylinder was very close to failure in multiple modes at approximately the 

same pressure (i.e. an identical cylinder of the same dimensions and material may have failed by 

axisymmetric yielding vice the general instability depending on the eccentricity of the cylinder 

and other small defects). This multiple failure mode condition must be guarded against in real 

designs, usually by applying different safety factors to the various modes. [1] 

Table 2: Cylinderl.f Elastic General Instability Failure Pressures 

DESIGN RULE FAILURE PRESSURE 
(PSI) 

% FROM 
EXPERIMENT 

LOBES 

Experiment 4858   3 
Analytic Solution 4496 -7.5 3 

ABS 4496 -7.5 3 
PNA 4496 -7.5 3 

Germanischer Lloyd 4651 -4.3 3 
13A PS 4460 -8.2 3 

Cylinder 2.c failed at 3640 psi in an inelastic general instability mode with 2 

circumferential waves. However the design rule calculations all predicted failure by 

axisymmetric yielding at an average pressure of 4086 psi. For this cylinder the design rule codes 

were not close in predicting the elastic general instability failure pressure. This large 

overestimation of the failure pressure can be attributed to the assumption of perfect circularity in 

the design codes, whereas the experimental model had a two-wave sinusoidal imperfection of 

maximum height of + 0.105 inches. This deliberate out-of-roundness would significantly reduce 

the resistance to buckling. Table 3 compares the design rules / analytic solution to the 

experimental failure pressure. 
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From Table 3, the axisymmetric failure pressures were higher than the actual failure 

pressure but all were within 16% of the experimental result. This closeness between the failure 

modes resembles the results for cylinder 1 .f. Further study may be warranted to explore 

connections between axisymmetric yield and inelastic general instability. 

Table 3: Cylinder 2.c Elastic General Instability Failure Pressures 

DESIGN RULE FAILURE PRESSURE 
(PSI) 

% FROM 
EXPERIMENT 

LOBES 

Experiment 3640   2 
Analytic Solution 8642 137.4 2 

ABS 8642 137.4 2 
PNA 8642 137.4 2 

Germanischer Lloyd 9702 166.5 2 
13A PS 8536 134.5 2 
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Chapter 6: Conclusions 

The classification society design rules studied are important tools for engineers and naval 

architects designing and studying cylindrical structures subjected to external hydrostatic 

pressure. The engineer must have confidence that the design code used will provide acceptable 

(safe) calculations for his or her structure. This confidence can be assured by comparison of the 

calculated failure pressure and mode to that found from experiments. This thesis attempted to 

provide that comparison for several of the most used design rules along with a comparison of the 

analytical solution upon which most the design rules are at least partly based. 

6.1 Comparative Analysis Review 

As discussed in Chapter 5, the design rules had mixed results in correctly predicting the 

failure mode and failure pressure of the test cylinders. In general all of the design rules and the 

analytic solution were in agreement for the specific geometries. For the test cases of failure by 

axisymmetric yielding and lobar buckling, the calculated pressures were accurate when 

compared against the experimental results. However for the two cylinders that experimentally 

failed by general instability, all of the design codes predicted failure by axisymmetric yielding 

vice the general instability. The design rules only account for elastic general instability which 

will occur at a higher pressure than the inelastic general instability. For cylinder 1 .f the design 

codes calculation of the elastic general instability mode failure pressure was very accurate, but 

for cylinder 2.c the calculated failure pressures were all greater than 100% over the experimental 

pressure. The majority of the pressure differentials for 2.c can be attributed to the built-in non- 

circularity in the test cylinder. 
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6.2 Agreements and Differences 

In this thesis there were thirty failure pressures calculated (five failures for each of four 

test cylinders and five general instability pressures each for the two cylinders that failed by 

general instability) with design rule / analytic solution agreement on 33% of the pressures. The 

other twenty pressure calculations varied from over 30% to less than 1% different. 

The pressure calculations that were in agreement were generated from the use of the same 

equation and same dimensions for most of the asymmetric buckling and elastic general 

instability calculations. For the asymmetric buckling predictions, ABS, PNA, and the MIT 13A 

Professional Summer calculations use the same equation as the analytic solution. This equation 

was independent of the number of circumferential lobes in the failed part of the shell. For the 

general instability cases, the ABS and PNA calculations agreed with the analytic solution. These 

three codes used the same effective length (Lc = frame spacing) and the assumption that the 

radius of the combined shell and stiffener was the mid-plane radius of the shell. 

The difference between calculations can be accounted for individually: The 

Germanischer Lloyd code for asymmetric buckling used an iterative process that was dependent 

of the number of lobes in the failed cylinder; however the failure pressure was still within a tenth 

of a percent of the other calculations. The predictions for elastic general instability were also 

generally close. The Germanischer Lloyd and MIT 13A Professional Summer codes used 

different assumptions for Le than the other codes, which gave predicted failure pressures slightly 

different than the base general instability equation (equation 10). The largest variations between 

the codes were generated for the axisymmetric yield mode. All of the codes used simplified 

variations the analytic solution developed by Pulos and Salerno. These variations in the shell 

yielding pressure come about due to the different simplifications made in the codes. 
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6.3 Applications of the Models 

The various design rules studied are promulgated to ensure safe design of cylinders for 

use under external pressure conditions. This safe operation requires an almost absolute certainty 

that the design will not fail under the worst anticipated condition (many theories and practices 

exist on risk based design and the use of safety factors). The comparison of the design rules to 

an analytic solution, analysis tools (MIT 13A Professional Summer and SNAME), and to 

experimental results allows a designer to have a good idea of how a particular cylinder design 

would be evaluated by each entity. This comparison ability would be useful in judging the initial 

feasibility of a design and also would be useful in applications where a design would be subject 

to more than one classification society. 

The comparisons in this thesis should in no way be used as a detailed design tool for the 

subject cylinders. After an initial design is compared and judged to be adequate, much more 

rigorous analyses must be used to ensure a safe design. These advanced analyses should include 

finite element methodology and other tools that can look at local stresses instead of generalized 

stresses in the shell. These higher order analysis tools can account for material differences, 

geometric eccentricities (out-of-roundness and other along the shell), varied spacing and sizes of 

stiffeners, and actual construction factors such as heat effected zones around welds, and 

bulkhead effects. Another important area that is addressed by other parts of the design rules but 

not studied here is that of shell penetrations. These discontinuities in the shell are very 

susceptible to stress concentration and must be reinforced to prevent failure at pressures lower 

than that predicted for a continuous shell. 

55 



6.4 Further Areas of Study 

There are several areas that require further research to completely understand the result of 

the above analysis. The area most evident in need of more study is the failure of the cylinders by 

inelastic general instability. While some work has been accomplished on this phenomenon, most 

of the work is either classified by government entities or is empirical data. As part of the 

research into the inelastic general instability should be a detailed analysis of interactions / 

relationships with axisymmetric yield. As found from the experimental cylinders that failed by 

inelastic general instability, the design codes and analytic solution predicted failure by 

axisymmetric yield of the shell at pressures close to the actual failure pressures. These 

comparisons suggest that at least the two modes are very close together and may have some 

interaction. 

There are many other classification societies that produce design rules for stiffened 

cylinders and other geometries. These societies include the American Petroleum Institute (API), 

NORSOK and Det Norske Veritas (Norway), Lloyd's Register (United Kingdom), Registro 

Italiano Navale Group (RINA) (Italy) and several others. These additional design rules could be 

compared against the existing test cylinders as well as all of the design rules should be compared 

against more experimental data. 

Finally, the base methodology can be expanded to include other geometries such as 

spheres, hemi-spheres, cones and toroids. The classification societies address most of these 

forms which can be found as the end closures for most submersibles and other pressure vessels. 

These more complex geometries present more challenging analytic solutions and are in general 

harder to manufacture. Experimental data is scarcer; therefore finite element models may be 

needed to generate comparisons. 
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Appendix A: Codes for Test Cylinder l.d 
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AMERICAN BUREAU OF SHIPPING 

Rules for Building and Classing Underwater Vehicles, 

Systems, and Hyperbaric Facilities 

Definitions 

ksi:= lOOOpsi 

E := 3000(ksi      Modulus of Elasticity 

v := 0.3 Poisson's Ratio 

o := 80000psi    Yield strength 

Shell Parameters 

Ls := 4.266n      Distance between stiffeners 

Lc = 22.488in     Distance between bulkheads 

R = 8.007in       Mean radius of shell 

t = 0.081 in Thickness of shell 

R •= R + -       Outer radius of shell o 2 

D0 := 2R0 Outer Diameter of shell 

Ring Stiffeners 

tw:=0.l38n thickness of web of ring stiffener 

depth := 0.57in height of ring stiffener 

b := tw faying width of stiffener (from P&S for I beam stiffener) 

bf := o.Oin breadth of ring stiffener 

b2 := bf - tw breadth of ring stiffener minus the web thickness 
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d := O.Oin ring stiffener flange thickness 

Lu := L -1       Unsupported spacing between stiffeners 

L:=ma>(Ls,Lb) 

L=4.266in 

.5- 
tw-depth   +b2d 

V depth + b2-d 
first centroidal height of ring stiffener 

cj = 0.285in 

c2 := depth - cj second centroidal height of ring stiffener 

c2 = 0.285in 

h := cj - d        distance from centroid of ring stiffener to nearest edge of flange 

R^ := R + .5-t + c2 radius to centroid of ring stiffener 

Rj = 8.332in 

A  := (t • depth + b2-d)   cross-sectional area of ring stiffener 

As = 0.079in 

Ir:=|^)(bf-cl3-b2-h3 + Vc23 moment of inertia of ring stiffener about its centroidal axis 

Ir=2.13x 10  3in4 

Rf-:= R + .5-t + depth      Radius to tip of the stiffener 

Rf = 8.617in 

Combined Plate and Ring Stiffener 

effective length of shell plate 
^1.5•^/R4A 

Le := min 
.   0.75L.   , 
V s J 
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Le= 1.208in 

Ap:=Lt area of effective plate 

A     '= A   + A sp     '^p T ns area of plate and ring stiffener 

Hc := depth + t height of combined plate and ring stiffener 

Hc = 0.054ft 

B, := L - tw      plate length minus the web thickness 

c]c:=.5{ 
twHc

2 + Brt2+b2d(2Hc-d) 

twHc + B,t + db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (R0) 

c,c = O.lOlin 

\ := R - .5t + clc        radius to centroidal axis of combined ring stiffener and shell 

Re = 8.067in 

'-3 
.L'lc3 " B,(clc - l)3 + bf-(Hc - c,cf - (bf - tw).(Hc - c|c - d)3 

moment of inertia of combined plate and shell 

Ie = 0.009in4 

General Equations 

M:=L 

Rt 

M = 5.297 

e:=[3(,-v2); •M 
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6 = 6.809 

Q:= 

Q = 3.405 

N:= 
cosh(2Q) -cos(2Q) 

sinh(2Q) + sin(2-Q) 

N = 0.997 

G:=2 
(sinh(Q)-cos(Q) + cosh(Q)sin(Q)) 

sinh(2Q) + sin(2Q) 

G =-0.081 

H:= 
sinh(2Q) - sin(2Q) 

sinh(2Q) + sin(2Q) 

H = 0.998 

Inter-Stiffener Strength (6.19.1) 

1) Inter-stiffener strength equations 

This equates to axisymmetric buckling 

A:=A. Effective area of plate and stiffener (External stiffeners) 

A = 0.073in2 

A-   1 

F:= 

•G 
■J 

A + tw-t + 
2N-t-L 

F = -0.027 

ay- 
t 

R 

1 -F 
yield pressure at midbay and midplane of cylinder 
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P   = 787.9psi 

This corresponds to Lobar buckling 

2.42- E- 
Pm:= 

2R 

(.-.') 
2R l2R 

von Mises buckling pressure for a cylinder 

P   = 604.9psi 

Maximum allowable working pressure for inter-stiffener strength 

P P m   ._    m 
Pc:= 2 

1 f — < 1 
py 

■V 
f 

1 
P   ^ y 

2P 

h .    Pm 
if >3 

py 

Pm 

py = 
0.768 

Pc = 302.4psi 

p •  - raits •" = Pc- .8 

if 1<—<3 
py 

aits 242psi 
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2) longitudinal stress 

Limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield. No direct 

correlation to major failure modes 

y:= 

A-l 1  

A + tw-t + 
2-N-t-L 

e 

pi:= 
2-cyt 

R 
1 + 

(   12  ^^ 
•y-H 

vl -v   J 

P, = 732.7psi 

P„k := Pi.67      Maximum allowable working pressure for longitudinal stress 

pals = 49088Psi 

b Overall Buckling Strength (6.19.5) 

K:=- 
7T-R 

n:= 1 

A2(n) := n   - 1 

AjCn)- 
X 

f 

A2(n) + 
V 2 ̂

(2     3 •\n   + A. / 

E.t EIe-A2(n) 

R R3L 
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Given 

n >2 

n2 := Minimiza pn j ,n] 

n2 = 3.109 

n must be an integer 

n2im:= round (n2,0) 

"2int = 3 

12first 

n2first = 2 

n2jnt100 if n2int=l 

n2int ~ '   otherwise 

12prime' 

f   n2f.rst   X 

n2int 

n2int+1 

n2int+2 

12prime] 

Pn2:= 

Pn2 = 

'Pnlfn2prim^) 

Pnlfn2prime, 

Pnl('n2prime2 

Pnlfn2prime3 

( 3^ 
5.127x 10 

1.522x 103 

1.974x 103 

psi 

1,3.022 x 10 j 

Pn := min(Pn2) 
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p_ = 1522.3psi 

Paol:=Pn-5 

Paol = 761.131psi 

Summary 

Axisymmetric Buckling 

Py = 787.9psi 

Lobar Buckling 

Pm = 604.9psi 

General Instability 

pn = 1522.3psi 

n2int = 3 
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Germanischer Lloyd 

1988 Edition 

Chapter 2 - Submersibles 

MPa:=106Pa ksi:=103psi 

General Definitions 

E:=3000(ksi 

Lj := 4.26än      stiffener spacing 

L3 := 22.488n     length of cylinder between bulkheads or lines of support 

s := .08lin thickness of shell 

R := 8.002n       radius to centerline of shell 

v := 0.3 Poisson's Ratio 

k := 80-ksi minimum yield stress of material 

Stiffener Dimensions 

ef := o.Oin flange thickness 

df := o.Oin width of flange from web to edge of flange 

b2:=2-df 

dw := 0.57in Height of web 

ew:=o.l38n      web thickness 

b := ew width of stiffener ring in contact with shell 

A j := ef(evv + 2df) + ew-dw      cross-sectional area of stiffener ring 

A, =0.079in2 
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"stiff :=dw+ef 

Hstiff=0.57in 

'1 -= 
1 ew "stiff  +b2ef 

2 ewHstiff+b2ef 

cj =0.285in 

c2:" "stiff ~cl 

c2 = 0.285in 

h2 := c, - ef 

h2 = 0.285in 

(ew + 2df)cj  -(2df)h2 + ew-c2     Centroidal Moment of inertia of ring stiffener 

Ij =2.13x 10  3in4 

e := c2 + .5s      distance from stiffener centroid to center of shell 

e = 0.325in 

Effective Stiffener and Shell 

Letest :=b+V2Rs 

Le:= Letest   if Letest - Ll 

Li   otherwise 

Le= 1.277in 

2                         3 
A,e                  Les 

1   .-                   I li + e              A,         J        12 
1 + —- 

Le-s 

L = 6.92x 10  3in4 

Effective length of shell (eqn 45a,b) 

Moment of Inertia of combined plate and shell 
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Hstiffc:= Hstiff + s        Total height of stiffener and plate 

Hstiffc = °-651in 

dj := s 

bsl:=Le-ew 

1  ewHstiffc   + b2ef  +bsls(2Hstiffc-s) clc:=  
2 ewHstifrc 

+ b2ef+bsrs 

c]c = 0.47in 

c2c:=Hstiffc_clc 

c2c = 0.181in 

R0 := R - .5s + c2c       radius of stiffener ring centroid including effect of Le 

R0 = 8.I48in 

R2 
A := A, Modified area of stiffener ring 

«o2 

A = 0.076in2 

el:=c2c+5s 

e, =0.222in 
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2.4 Asymmetrie Buckling (Lobar but not named this) 

TtR 

Li 

n := 2    initial guess 

R       trt\ ■ 

(    2        ^ 

w I 
"2    2f 2  ,   , A2 

s -In   - 1 + ^.j   1 
1 

2(         2) 
12R -U -v / 

Pn](n).- 
2     ,       c,  2 

n   - 1 + .5-Xj 

I >s-ßnl(n) 
Pn](n).- 

R 

Given 

n>2 

n   := Minimizap  i ,n) 

n0 = 10.612       n must be an integer 

ngint:= round (ng,ö) 

ngint = '' 

"gfirst:" ngjnt-100 if ngint=l 

"gint"1   < Dtherwise 

"gfirst = 10 

gpnme' 

^   "gfirst   ^ 

"gint 

"gint + l 

V"gint + 2y 

gpnme 

(\0^ 

11 

12 

V13y 
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Pn2:= 

Pnl h gpnme0 
) 

gpnme Pnl(n 

Pnl^gprimeJ 

Pnl^gprimeJ 

Per:= min(Pn2) 

pcr = 605.9psi 

3.3.3 General Instability 

L:=U 

71-R 

X2= 1.119 

ßn2(n):= 

P0(n) := 

P](n):=- 

(^n2 - 1 + 0.5-X2
2jf n2 + X7 

Esßn2(n) 

R 

(n2-l).E,p 

RoLl 

Pnla(n):=P0(n) + Pl(n) 

n:=2 

Given 

n>2 

n2:=Minimiz^pnla>n) 
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n? = 3.247 n must be an integer 

n2int:=round(n2>°) 

n2int = 3 

12prime- 

^2int-^ 

n2int 

n2int + ' 

v
n2int+2y 

Pnlaf n2prime. 

Pg2:= 

Pnlaf n2primej 

Pnlaf n2prime, 

Pnlaf n2prime, 

Pg:=min(pg2) 

pB = 1244psi 

/ 

PR2 

5.022x 10 

1.244x 10 

1.452x 10 

V2.187x 10 ) 

psi 

2.6 Symmetric Buckling (axisymmetric) 

More Definitions 

For Elastic-Plastic Region (Eqns are in the program) 

Es := E Secant Modulus = Young's Modulus for elastic region 

Ej^E Tangent Modulus = Young's Modulus for elastic region 

v  := v Poissons Ratio, elastic-plastic; = Poisson's ratio in elastic 

1^7] 
s2-R2 

shape factor 
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a = 0.063— 
mm 

C5:= = a-L]         calculation factor for symmetric buckling 

C5 = 6.809 

Pact 
2s   E                . . 

:= .     critical pressure, elastic, calculation factor 1 dM 

R2J3.(,-v
2) 

Past = 3716.21 lpsi 

C5: = a-L]        calculation factor for symmetric buckling 

C5 = 6.809 

G:= p 

Past 

C6: = — J\ -G 
2 

C7: = — J\ + G 
2 

C8: = C5C6 

C9: = c5-c7 

F. • 
4                 cosh(Cg)   -cos(c9) 

rl ' 
C5   cosh(Cg)sinh(Cg)      cos(c9)sin(c9) 

c6                    c7 

cosh(Cg)-sin(c9)      sinh(CgVcos(c9) 

F-, - 
C7                              C6 

r2- cosh(Cg)sinh(Cg)      cos(c9)sin(c9j 

c6                    c7 
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cos(Cg)sin(C^j      cosh (CgVsinm Cgi 

F,:= 
2   cosh(Cgjsinh(Cgj      coslC^jsirnCpj 

cosh (Cglsinl Cn)      sinhl Cgjcosf Co) 

2   cosh(CgVsinhfCg)      cos(Co)sin(C0J 
1 -v 

C, 

C 

1  
2y s-Li 

10- A b 
 + h 
sLi      Li 

(        O 

C 11 
0.91 

1 -v 

-p-R 

CTx:=aoi- + cio'cirF4 

a<f>:= ao{1 - C10'F2 + vC10Cl 1F4) 

axi:=ao| --ciocirF4 

ax=-3.286x 10 Pa 

a(()l:=Go-( 1 -C10"F2~vC10CllF4) 

a± = -6.(>5\x 10 Pa 

K0 

C* 

.8k = 64ksi Determination factor (if>.8k then must use Et, Es, etc) 
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°i:=V°x2 + a4>   -ax°<|) 

Oj = 83.538ksi 

u := -Koüx 

a = 96.5ksi 

E, :=- 

E, =3.215x 10 

:=k-   .8+ .2tanh   5—E, -4 1 

a = 79456psi 

£:=-■   0.8+ 0.2atanh 5 4 

E = 3.215x 10 

E 
0.8+ 0.2-| tanh| 5—E -4 

Es = 24548.3 lksi 

Ej :=E[ 1 -tanh| 5—E - 4 

Et= 1019.968ksi 

2     12        J   E 

vp = 0.336 

■sj^s'^x 
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2.s2-Es 

Paa ■ — 

^('-vp'j 

K,:= (l-K0 + K0
2) 

H, 

4|l-vp  j-Kj 

H2--=[(2-vp)-(l-2-vp}K0-] 

Hp=   1 + H4- H2   -3-^1 -vp 

C 
(       H2.H3.H4^ 

3'- 1 + 
vpHl 

C3 = 0.068 

C2:= 

'             2       > 
H3   H4 

C2 = 0.049 

Cj:= 

2       > 
H2   H4 

1  
Hi 

Cj = 0.897 

C0:= 

2     2 
crc2-vP-

c3 

2 
]-Vp 

c0 = c .221 
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a, := 

4 

3- 

2 

A s2-R2 

trial := 
a,L, 

trial = 1.068 

m:= 1 

m 
tria!2:= J— (m + 1) 

trial2= 1 iterate on m until trial is < trial2 

Pm:~ Paa'C0 

pm = 923.8psi 

p = 924.0psi 

a,hA    ,   ' f   *-m ^ 
UarLiy 

failure pressure 

iteration point - change pressure until pm = p 

Summary 

Axisymmetric Buckling 

pm=923.8psi 

Lobar Buckling 

pcr = 605.9psi 

General Instability 

Pg=1244psi 
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Society of Naval Architects and Marine Engineers 

Submersible Vehicle Systems Design (1990) 

ksi:= lOOCpsi 

Input Section 

Lf := 4.266n      Length between frames 

L. := 22.488n    Length between bulkheads 

R := 8.00^n       Radius of cylinder to centerline of shell 

t:=0.08lin shell thickness 

RQ := R + .5-t     radius to outside of shell 

RQ = 8.047in 

E := 30000ksi     modulus of elasticity 

a  :=80ksi       minimum yield stress of material 

H ■= 0.3 Poisson's ratio 

Ring Stiffeners 

t   := 0.l3Sn      thickness of web of ring stiffener 
W 

depth := 0.57in total height of ring stiffener 

bf := O.Oin breadth of ring stiffener 

d := O.Oin ring stiffener flange thickness 

b7 := bf -1 breadth of ring stiffener minus the web thickness 
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c, := .5- 

2 2\ 
tvvdepth   + b2-d 

first centroidal height of ring stiffener 
tw- depth + b2d 

C] =0.285in 

c2 := depth - c, second centroidal height of ring stiffener 

c2 = 0.285in 

h := cl ~ d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.285in 

R,. := R + .5t + c2 radius to centroid of ring stiffener 

RT=8.332in 

Ar:= (vdePth + b2-d) cross-sectional area of ring stiffener 

Ar = 0.079in2 

lr:=UJ^bfCl   _b2'h  +tw'c23J moment of inertia of ring stiffener about its centroidal axis 

Ir=2.13x 10~3in4 

Combined Plate and Ring Stiffener 

area of effective plate 

area of plate and ring stiffener 

height of combined plate and ring stiffener 

plate length minus the web thickness 

V = Lft 

Asp :=Ap + Ar 

HC:= = depth + t 

B,:= Lf-(w 
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clc:=.5| 
twHc

2 + Brt2
+b2-d.(2-Hc-d) 

twHc + Brt+db2 

neutral axis of combined plate and ring stiffener 

from outer fiber of plate (RO) 

clc = 0.lOHn 

R := R - .5t + c, radius to centroidal axis of combined ring stiffener and shell 

Rc = 8.067in 

L:=- 
3 L 

Lf clc3 - Bl(clc - *)3 + bf(Hc - c]c)3 - (bf - tw)-(Hc - clc - d)3 

moment of inertia of combined plate and shell 

Ie = 0.009in4 

Axisymmetric yielding 

B:= 
V1 

Ar + twt 

B = 0.124 

0 := 10-|j2-U - \?)_ 
f T„ \ 

V2-Ry 

50-t 

R 

9 = 6.809 

N:= 
cosh(e)-cos(e) 

sinh(e) + sin(e) 

N = 0.997 

ß:= 
11-N 

50- 

f        2       ^^ 

Ar + t„ ,-t V    r      w   ) 
R 

ß = 1.126 
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H:= 

( (*\ 
3-sinh   — 

\2J 
cos| — I + cosh 

fa\      fQ\ 
—   -sin 

sinh(e) + sin(e) 

H = 0.105 

> R 
Pv: y '0.85-B 

1 + H- 
1 + ß 

py = 781.382psi 

Lobar Buckling 

Pb:= 
2.42 E 

2) 

t 

2R 

r 
_!t - 0.4S| 

'             > 
i2 

[_2-R \ .2-R, ) \ 

Pj, = 604.9psi 

General Instability 

7tR 

Lb 

n:= 1 

Pcrl("):=V7 
E-t 

R 
2     ,      m 

n   - 1 + — 
2 / 

(n2-,). EL 

(2        2)2 

•\n   + m } 
R   Lf 

Given 

n> 1 
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n2 := Minimiza pcrj,n) 

n2 = 3.109        n must be an integer 

n2jnt:= round (n2,0) 

n2int = 3 

12first -= n2inf100 if n2jnt=l 

n2int _ ^   otherwise 

12first: 

2prime' 

f  n2first   A 

n2int 

n2int + ] 

Vn2int+27 

Pcr2: 

-ZT' 

'PcrljSprime^ 

Pcr/^prime, 

Pcrlf ^prim^l 

Pcrlf ^prime^ 

in(Pcr2) 

pcr = 1522.3psi 

Summary 

Axisymmetric Buckling 

p   = 781.4psi 

Lobar Buckling 

Pfr = 604.9psi 

General Instability 

pcr = 1522.3psi 
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MIT 13A Professional Summer Submarine Design Trends 

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS. 

Ref: "Hull Material Trade Off Study", D Fox, Jan 94 

ksi= lOOOpsi 

Global Variable Inputs: 

e = 0.Oin Eccentricity 

Material: 

GV = 80000psi 
yield stress of mat 

E = 3000(ksi young's modululs 

v =03 poisson's ratio 

Geometry: 

R = 8.oo^n        shell radius 

DH2R shell diameter 

Lf = 4.266n       frame spacing 

Ls = 22.488n     bulkhead spacing 

tp = o.08iin       shell thickness 

tf = o.Oin flange tickness 

wf HE o.Oin flange width 

tw = 0.i38n       web thickness 

hw s o.57in       web height 
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Compute areas: 

R, ■= R + —     Frame Radius 
2  . 

Rj = 8.047in 

Af := tf wf        Frame flange, web area 

A\v :_ t\V'h\y 

A := Af + Aw    Frame Area = Flange + Web 

A = 0.079in2 

PARTI SHELL YIELDING 

Von Sanden and Günther (1952) 

PNA Section 8.4 

twtp 

A + tw-tp Area ratio 

B = 0.124 

9 :=Lf 

(R-.p)2 . Slenderness Parameter 

9 = 6.809 

N:= 
cosh(e)-cos(e) 
sinh(e) + sin(e) Deflection coefficient 

2-N 

A + tw-tp ,-U2) 
0.25 f Frame flexibility parameter 

ß = 1.126 
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i -- 
2) 

B 

1 + ß 
Frame deflection parameter 

r =0.341 

sinh 

HM:=-2- 
•cos| — I + cosh I (B)   .(B 

—    sin  — 
\2J      \2 

sinh(e) + sin(e) Bending effect (mem) 

HM =0.081 

HE:=-2- 
f ^0.5 sinnl - lcos| *\ (*\      f —   - cosh   —    sin 

11 ill      I C 
Vl -v' j 

HE = 0.085 

sinh(e) + sin(e) 

2 
Bending effect (bend) 

K:= 

Peri: 

sinh(e) - sin(e) 

sinh(e) + sin(e) 
fy «- Oy 

P0 <r-  1 Psi 

Pj <- 1000 psi 

P2 <- 2000 psi 

delta <- 5 psi 

limit <- 1 psi 

conv<- 1 psi 

j^0 

while j < 20 

for i e 0  2 

-P;R 

lp 

-P.R 
I«6i< ~[l + r.HM-vHEi] 

-PR 
, « —'05 + r-Hpi 

-P.R 
i< —'0.5-r-HEi 

°<Mfo ' 
-PR 

l 

-P-R 
l 

i -r- 

l-r 

1   +   V 
3    "\ 

0 5 

/ 

1 - v 

1 - v 

(    3    ^3 
        .] 

.       2 
\1 - v  ) 

Bending efffect near frame 
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-P.-R 
i 

1 -r- 
tp 

1  -  V 

°xxfb ' 

°xxfi<- 

-P.-R 
l 

-P.-R 

o.5 - r 3     ^ 

1 - v 

0.5 

0.5 

■K 

l-v2y 

■K 

0.5 + r- 
(     3 

1 - v 

0.5 

-K 

' sy •e- 

' °<t>t>sc> 

°iM6i 

ü xxso 

° XXSl 

c xxfo 

\ a xxfi / 

o 1 <- a syo 

° 2 *" ° sy2 

f3*-fsy5 

° 4 <- a sy7 

"SYM ' f      2 2~) 
J 

f   2 2V ^03   - o3ct 4 + a 4 J 

a sy <— max 
°SYM 

shel • 

dav < 

^SYF / 

stress. <— a sy 

test- <— If y — a syi 

test-. 

conv 

test, 

break   if    stress- - fy   < limit 

PQ <- P.    if  shel- dav > 0 

P2 <- P,    if  shel dav < 0 

P   <— P   + 
M ^ r0 + 

j<- j+ 1 

lP2 - P0> 

ouV 

r 
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Perl 
801.682 

14 

Pcrit - Perl -'PS' 

Peril = 801.7psi 

PART 2 LOBAR BUCKLING 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

Collapse pressure: 

■t   x2.5 

2.42-E-1 — 

PeLB: 
Lf ft] ( if75 

 0.4S   — Ul -v ) 
D 4 D ) 

PeLB = 604.9psi 

PART 3 GENERAL INSTABILITY 

Corrected Bryant Formula (1954) for better model test correlation 

Pressure loading is: 

P:=pgDtSFgi 

P = 6697.99psi 

Compute effective frame spacing: 

2 
.   _P_[ _R 

r_2EltP 
'^T?) 

y = 1.802 

Compute clear length: 
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LQ:- Lf    tw 

nj := 0.5-^1 -y 

nj=0.448i 

Web thickness: 

T>2 := 0.5-y/l + y 

n2 = 0.837 

4 coshmj »f - cos(n2 of 
cosh(nj •6Jsinh(n 

"1 

,-e) cosfn 2-GJ-sin(n2 

n2 

e) 

Fj = 0.23 

must be less 

than 1.00 

F1 is almost a linear decreasing function for pressures from 1 to 2000 psi with an average value 

of 0.27. This will be used in the following analysis as the pressure is the unknown and therefore 

the above equations cannot be directly used. 

F! := 0.27 

Leff:=Lc-Fl + *v Effective shell plate length: 

Leff = 1.253in 

Theoretical critical lobe number values are: 

i:= 0..2 

3 

v4y 

Aeff := Leff tp 

Circumferential Lobes 

Effective plate area 
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Aeff = O.lOlin 

m:= 7i- 

Ls 
Longitudinal Lobes 

m= 1.119 

'hw + tf^ 

yna
: 

V      2 
Af 

,      2 
Acff 

Aeff + Aw + Af 
Frame-plate neutral axis (ref web centre+ toward 

flange): 

yna =-0.183m 

Uses Parallel Axis Theorm: Icor = I + Ad2 

Moments of inertia for plate,flange,web: 

Lefftf 

12 

Iw := 
twhw" 

12 

If:= 
Wf tf 

12 

'pcor := !p + Aeff 
f tp + h\v 

,      2 
+ yna 

nvcor:_ I\v + AW'(yna) 

( H + K A 

Ifcor := If + Af yna 
V      2 j 

Total: 
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leff :_ Ipcor + Kvcor + 'fcor 

. 4 
Ieff = 0.007in 

The critical Elastic General Instability pressure is: 

&t„ 
PcGI. := 

m M2~ •E-Ieff 

'       R 
/   \2     ,      m       /   \2        2 H -1+TIH +m. 

2 R3.Lf 

Min Pressure: 

r 

PcGI = 

5.035x 10 

1.278x 10 psi 

U.516X 10 ) 

PcGI := min(PcGl) 

PcGI = 1278.1psi 

Summary 

Axisymmetric Buckling 

Peril = 801.7psi 

Lobar Buckling 

PcLB = 604.9psi 

General Instability 

PcGI = 1278.1psi 

3 
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Analytic Solution 

Definitions 

ksi:= 6.894757106Pa 

E:=30000<si Modulus of Elasticity 

R := 8.007m Radius of cylinder to centerline of shell 

D:=2R Diameter of cylinder 

o   := 80ksi Yield strength 

L:=4.26än Length of supported cylinder 

Lj, := 22.488n Distance between bulkheads 

(.1 := .3 Poison's ratio for Fe/Steel 

t:=0.081in Shell thickness 

Ring Stiffeners 

tw:=0.138n thickness of web of ring stiffener 

H:=0.57in height of ring stiffener 

b:=tw faying width of stiffener (from P&S for I beam stiffener) 

bf:=0.0in breadth of ring stiffener 

b2:=bf-»w breadth of ring stiffener minus the web thickness 

d:=0.0in ring stiffener flange thickness 

4)nash := L - bf            distance from flange edges 
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cj:=.5. 
y H2 + b2-d2 

twH+b2d  ; 

first centroidal height of ring stiffener 

cj =0.285in 

c2:=H-C] second centroidal height of ring stiffener 

c2 = 0.285in 

h := Ci - d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.285in 

Rr:=R+ .5t + c2 radius to centroid of ring stiffener 

Rj. = 8.332in 

Ar := (tw-H + b2d) cross-sectional area of ring stiffener 

Ar = 0.079in2 

ML     3     ,    ,3 3 Ij. :=   - •( bfcj  - b2h  + twc2  I moment of inertia of ring stiffener about its centroidal axis 

Ir = 2.13x 10  3in4 

Aeff:=Ar' effective area of stiffener eqn [24a] from P&S 

Aeff = 0.076in 

A eff a :=  ratio of effective frame area to shell area eqn [62] P&S 
L-t 

a =0.219 

ß := - ratio of faying width to frame spacing eqn [62] P&S 

ß = 0.032 
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Combined Plate and Ring Stiffener 

Ap := Lt area of effective plate 

AsP 
:= AP + Ar area of plate and ring stiffener 

Hc := H + t height of combined plate and ring stiffener 

Hc = 0.054ft 

Bl:=L-»w plate length minus the web thickness 

clc:=.5i 
twHc

2 + Brt2
+b2d.(2.Hc-d) 

twHc + Bj-t + db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (R0) 

clc = O.lOlin 

Rc := R + .5-t + c]c        radius to centroidal axis of combined ring stiffener and shell 

Rc = 8.148in 

L:=- ,Lclc3 - Bl(c,c - t)3 + bf(Hc - c]c)3 - (bf - tw).(Hc - c,c - d)3] 

moment of inertia of combined plate and shell 

le = 0.oiin4 

Buckling of unreinforced shells 

von Mises bucking pressure: 

n:= l 

guess at number of waves around the circumference 
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Purl(n):= \ — 
E-t 

R 
2 [ n-R 

n   + .5- 
/   J 

2 
n   + 

7I-R 

L 

12- (.- 

-i2 

2 
n   + 

7tR 

Given 

n> 1 

nj :=Minimiz^pur],n) 

nj = 10.594 

n must be an integer 

n]int:= round (nj,0) 

nlint=11 

1 prime' 

"lint"1 

"lint 

nlint+ l 

v
nlint+2y 

Purlf "lprime. 

Purl 

Purl   "lpri prime. 

Purl( "lprime. 

V 
Purl   "lpri prime. 

Pur := min(Purl) 

pur = 607.94^si 
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Axisymi netric Buckling 

P cab := y <-0 

] im il <-—  1 0 p si 

t est   <— 0 p si 

con v   <—  I   p si 

j «- o 
wh i le    j£20 

f 

Y 

)      L 

i i *- j-V' -i 

r, 2  <_ -L.^J]  + 

e <-^3-(i - n' 
VRM 

4                             cosh (r| j -6 j    -COS(TI2-0) 

0    cosh (r\ ,-eVsinh try  ,  e)        c o s (r\ 2 -0)sin (ri 2 O) 

ii                                    n2 

cosh(r| |  e)sin(r| j-6)        sinh(r| |<oYcos(r| 2-6) 

r     ,                    n 2                                     71 ' 
cosh(n |0)sinh(ri (o)        COS(T| 2-0Vsin(r| 2-0) 

1 1                                                    n 2 

cos(r) 20)sin (ri 2-0)        cosh (r|  |   eVsinh (r|  ,   ö) 

^2                                    n i r,<    1    3 

.       2 
■vj 1 - n 

cosh(r|  |OVsinh(r)  |0)         cos(r) 2'0)sin(ri 20) 

ni                                     n 2 

cosh(r) |-e)sin(iT 2-0)        sinh(r)  |-eVcos(Ti 2e) 

n 2                                                    il  1 r       .       1       3 

J i - u2   C05h (71 re)sinh (^ re)     cos(ri 2-o)sin (IT 2 e) 

^  1                                                    ^2 

.. o- 
« + ß + 

"1 —     ex 
2 ) 

(l-ß)-F, 

denom 1  <- A F2
2
+F2.F4.(,  -2,).(    I    °9'     ) + F4

2.(,-M+,
2).f    0"   ^ 

L                       U i - M2 J                    I ■ - n2 JJ 
den o m 2 <— [ — H—ra 

'AT) 
PcJ            (3 

/— + denom 1  - denom 2 

break    if   |p cj - test 1   < Urn it 

^!gU,.(-*')!£)' 
test   <- p c2 

j <- j +  1 

P c2 
out      <  

u          c 0 n v 

out (   «- j 

0 ul 
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Pcab 
885.4 

Paxiy^Pcab.'P5' 

paxiy=885.4psi 

Asymmetric Collapse (Lobar buckling) 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

PcLB:= 

2.42EI — 

2.5 

f- 
vD 

m (   2)°-75 
-0.45   —    U -n / 

PcLB=604-9Psi 

General Instability of shells and rings 

^:= 
7T-R 

n:= 1 

Et 
PcGl(n):= — — 

Given 

(n2-lW 

2y 
(„Wf R'.L 

n> 1 

r^ := MinimizapcQj,n) 

n7 = 3.109        n must be an integer 
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n2int:=round(n2>0) 

n2int" 3 

12prime- 

'n2int-] 

n2int 

n2int + ' 

v
n2int+2 

cgi2 •■ 

/PcGlTn2prim^V 

PcGlTn2prime1) 

PcGlfn2prime2") 

PcGlfn2prime;") 

Pcgibryant := min\Pcgi2) 

3 
Pcgibryant = L522x ,0 Psl 

Summary 

Lobar Buckling 

PcLB = 604-9Psi 

Axisymmetric Buckling 

Paxiy=8854Psi 

General Instability 

Pcgibryant = 1522-3PS' 

n2int = 3 
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Appendix B: Codes for Test Cylinder l.f 
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AMERICAN BUREAU OF SHIPPING 

Definitions 

ksi = lOOCpsi 

E:= 30000<si Modulus of Elasticity 

v := = 0.3 Poisson's Ratio 

ay 
= 9850tbsi Yield strength 

Shell Parameters 

Ls: = 2.665n Distance between stiffeners 

Lc: = 42.12% Distance between bulkheads 

R:= = 17.3285in Mean radius of shell 

t := 0.263in Thickness of shell 

Ro :=R + 1 
2 

Outer radius of shell 

Ro = 7.46in 

Do :=2.R0 Outer Diameter of shell 

Ring Stiffeners 

lw = 0.19Sn thickness of web of ring stiffener 

depth := 1.025i i height of ring stiffener 

b:= :tw faying width of stiffener (from P&S for I beam stiffener) 

bf: = 0.763in breadth of ring stiffener 

b2 = bf-Kv breadth of ring stiffener minus the web thickness 

d:= .263in ring stiffener flange thickness 
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Lj, := Ls - tw     Unsupported spacing between stiffeners 

Lj, = 2.467in 

L-ma^Lg,!^) 

Cl:=.5. 

L = 2.665in 

f 2 2^ 
tw-depth   +b2d 

V 
first centroidal height of ring stiffener 

tw- depth + b2d 

cj =0.351in 

c2 := depth - c} second centroidal height of ring stiffener 

c2 = 0.674in 

h := cj - d distance from centroid of ring stiffener to nearest edge of flange 

Rg := R - .5t - c2 radius to centroid of ring stiffener 

Rg = 16.523in 

As := (tw-depth + b2d)   cross-sectional area of ring stiffener 

As = 0.352in2 

Ij :=  - •( bfcj  - b2h  + tw-c2 ) moment of inertia of ring stiffener about its centroidal axis 

Ir=0.031in4 

Rf := R - .5t - depth      Radius to tip of the stiffener 

Rf= 16.172in 
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Combined Plate and Ring Stiffener 

Le := mir 

r\.5-JT^ 

V °^Ls , 

Le = 1.999in 

Ap:=L-t 

Asp := Ap + As 

H  := depth + t 

Effective length of shell 

area of effective plate 

area of plate and ring stiffener 

height of combined plate and ring stiffener 

Hc = 0.107ft 

B,:=L-tw 

c,c:=.5| 

plate length minus the web thickness 

tvvHc
2 + Brt2 + b2d(2Hc-d) 

twHc + B,-t + db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (R0) 

c]c = 0.4in 

.<..-". -.    wlc radius to centroidal axis of combined ring stiffener and shell R -=R + .5-t-c, 

R^. = 17.06in 

Ie := 1[LC,C
3
 - B,.(cIc - t)3 + bf-(Hc - c,c)3 - (bf - tw).(Hc - c,c - d)3] 

moment of inertia of combined plate and shell 

Ie = 0.l87in4 

General Equations 

M:= 
R-t 

M = 1.248 
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,[,(, •M 

9 = 1.605 

Q:= 

Q = 0.802 

N:= 
cosh(2Q) -cos(2-Q) 

sinh(2Q) + sin(2Q) 

N = 0.774 

G:=2- 
(sinh(Q)cos(Q) + cosh(Q)sin(Q)) 

sinh(2Q) + sin(2Q) 

G= 0.934 

H: 
sinh(2Q) - sin(2Q) 

sinh(2Q) + sin(2Q) 

H = 0.41 

Inter-Stiffener Strength (6.19.1) 

1) Inter-stiffener strength equations 

This equates to axisymmetric buckling 

A:=AC Effective area of plate and stiffener 

A = 0.369in 

f 
A- 

V        2. 

A + tw-t + 
2N-t-L 

9 

F = 0.267 
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yield pressure at midbay and midplane of cylinder 

yR 

1 -F 

Py = 2039.3psi 

von Mises buckling pressure for a cylinder 

This corresponds to Lobar buckling 

5 

(   t   \2 

Pnv 

2.42E-     

3 r 
(,-v2)4. 

_2R             \2-RJ 

Pm='° 369.9psi 

maximum allowable working pressure for inter-stiffener strength 

pc:= 
P P m   .„    m     if   < 1 
2 P 

y 

(      P   ^ 
i       y 

V 2P V my 
if 1<^<3 

py 

5 „     • ,    m —Pv   if — > 3 
6 y    py 

m 
= 5.085 

P= 1699.4psi 

Paits :~ Pc'8 

Paits=1359.5psi 
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2) longitudinal stress 

limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield 

No direct correlation to major failure modes 

A 

!■=■ 

2 

A + tw-t + 
2-N-t-L 

2-cyt 

R 
1 + 

f    12    > 
•y-H 

- 1 

Vi -v ; 

P| = 2098psi 

pals:= PP67      maximum allowable working pressure for longitudinal stress 

Pa]s = 1405.6^>si 

Overall Buckling Strength (6.19.5) 

X:= 
7lR 

n:= 1 

A2(n) := n   - 1 

Aj(n):= 

A2(n) + - 
V 2 J 

Et 
Pnl(n):=—Al(n)+ 3 

f2     A \n   + X j 

EIeA2(n) 

R   L 

Given 
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n >2 

n2 := Minimizapn] ,nj 

n2 = 2.974        n must be an integer 

n2int:= round (n2,0) 

n2int = 3 

12first • n2int100 if n2int=l 

n2int "" '   otherwise 

^first: 

12prime-= 

f  n2flrst   ^ 

n2int 

n2int + 1 

n2int + 2 

Pn2: 

nlf n2prime0 J 

nlf n2prime, j 

nlf n2prime, 

nlf n2prime3 

Pn := min(Pn2) 

pn = 4496. lpsi 

PaoI:=Pn-5 

12prime, 

Pn2 = 

1.151 x 10 

4.496x 10 

6.32 x 10 

V 9.774 x 10" 

psi 

Pao) = 2.248x 10 psi 
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Summary 

Axisymmetric Buckling 

P   = 2039.3psi 

Lobar Buckling 

Pm= 10369.9psi 

General Instability 

pn =4496.1psi 

n2int" 3 
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Germanischer Lloyd 

MPa:= 106Pa 

ksi := 10 psi 

General Definitions 

E := 3000(ksi modulus of elasticity 

Lj := 2.665n stiffener spacing 

L3 := 42.12<ln length of cylinder between bulkheads or lines of support 

s:=o.263in thickness of shell 

R := I7.3285n radius to centerline of shell 

v := 0.3 Poisson's Ratio 

k := 98.5ksi minimum yield stress of material 

Stiffener Dimensions 

ef := o.263in flange thickness 

df := o.2825n width of flange from web to edge of flange 

bo := 2-df 

dw := 0.762n Height of web 

ew:=0.198n web thickness 

b:=ew width of stiffei 

A, := ef(ew + 2df) + ew-dw      cross-sectional area of stiffener ring 

A, =0.352in2 
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Hstiff:=dw+ef 

Hstiff=1.025in 

ci :=■ 
1 VHstiff  +b2ef 

2 VHstiff+b2ef 

Cj =0.351in 

c2 :~ Hstiff ~cl 

c2 = 0.674in 

h2:=cj-ef 

h2 = 0.088in 

'1-1 I (ew + 2-df)-Cl
3 - (2-df)-h2

3 + ew-c2
3 Centroidal Moment of inertia of ring stiffener 

Ij =0.031 in4 

e := c2 + .5s      distance from stiffener centroid to center of shell 

e = 0.805in 

Effective Stiffener and Shell 

Letest :=b+V2-R-s 

v= Letest   lf Letest - Ll 

Li   otherwise 

L  = 2.665in 

A          2                             T          3 Are                  Les 
1e- I 1.  I 

A,         '        12 
1 +  

Vs 

Ie = 0.187in4 

Effective length of shell (eqn 45a,b) 

Moment of Inertia of combined plate and shell 
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Hstiffc := Hstiff + s Total height of stiffener and plate 

Hstiffc=1.288in 

d,:= 

bs,:=Le-ew 

clc: 

2 ? 

1 evvHstiffc   +b2ef   +bsrs(2Hstiffc-s) 

2 ewHstiffc+b2ef+bsls 

c,c = 0.888in 

c2c:=Hstiffc~clc 

c2c = 0.4 in 

R0 := R + .5s - c2c        radius of stiffener ring centroid including effect of Le 

R0= 17.06in 

R2 
A := A |  Modified area of stiffener ring 

Ro2 

A = 0.363in2 

e,:=c2c+.5-s 

2.4 Asymmetric Buckling (Lobar but not named this) 

7I-R 
*l :=~~ eqn 19 

Ll 

n := 2 initial guess 
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ßnl(n) 

(n2        V2     s2{n2-l + X2 

— + 1 

12R .(,-v2) 

2        , c*    2 

n   - 1 + .5-X| 

eqn 18 

Pnl(n) 
Esßn](n) 

R 
eqn 17 

Given 

n>2 

ng := Minimiza pn j ,n) 

n_ = 10.936       n must be an integer 

ngint:=round(ng'°) 

"gfirst: 

neint = H 

ngint100 if ngint=l 

"eint ~~ '   otherwise 

"gfirst 10 

gpnme ■ 

"gfirst 

"gint 

"gint + * 

Vngint + 2; 

Pn2: 

"er- 

Pnlf ngprime0 

Pnlf "gprime, 

Pnlf "gprime, 

PnlPgprimeJ 

lin(Pn2) 

gpnme" 
ii 

12 

V13y 

p    =9269.1psi 
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3.3.3 General Instability 

L:=Lo Spacing between effective stiffeners 

X2:= 
7I-R 

\2 = 1 -292 

ßn2("):= 

n2- 1 + 0.5^2
2J-fn2+ l2

2 

P0(n) := 
Esßn2(n) 

P](n):= 
(.'-.)■ EL 

RoLl 

Pnla(n):=P0(n) + Pl(n) 

n:=2 

Given 

n >2 

n2 := Minimizapnja,n) 

n2 = 2.955 n must be an integer 

n2int:=round(n2>°) 

n2int - 3 

12prime = 

^n2int-^ 

n2int 

n2int+1 

n-.;„, + 2 V"2int 
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Po2: 

Pnlaf n2prime, 

Pnlaf n2prime. 

Pnlaf n2prim^ 

Pnlaf^primeJ 

in(Pg2) 

pD = 4651.4psi 

Pa2 

f11569^ 

4651 

6612 

V10240^ 

psi 

2.6 Symmetric Buckling (axisymmetric) 

More Definitions 

For Elastic-Plastic Region (Eqns are in the program) 

Es •= E Secant Modulus = Young's Modulus for elastic region 

E(:=E Tangent Modulus = Young's Modulus for elastic region 

v   := v Poisson's Ratio, elastic-plastic; = Poisson's ratio in elastic 

TT7) 
sV 

shape factor 

a = 0.024- 
mm 

Cc := a-Li calculation factor for symmetric buckling 

C5 = 1.605 

Past := 
2-s2-E 

past = 8364.876psi 

critical pressure, elastic, calculation factor 
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G:= 
Past 

C6:=-VT^G 

C7:=—J\ + G 
1     2 

C8 :~ C5"C6 

C9:-C5C7 

Fl:= 
4 cosh(Cg)   - cos(c9) 

C5   cosh(Cg)sinh(Cg)      cos(c9)sin(c9) 

cosh(Cg)-sin(c9)      sinh(Cg)cos(c9) 

F2:= 
cosh(Cg)sinh(Cg)      cos(c9)sin(c9) 

cos(c9)sin(c9)      cosh(CgVsinhYCg) 

jl-v
2   cosh(Cg)sinh(Cg)      cos(c9)sin(c9) 

cosh (Cg)sin(c9)      sinh(cgVcos(c9) 

Q 
F4:= 

1 - v 2   cosh(Cg)sinh(Cg)      cos(c9)sin(c9) 

C, 

v )    A 

C]0:= 
^       2; s-L] 

A        b 
+ — + 

s-Lj      Lj 
Fl 

C„:= 0.91 

1 - v 
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-p-R 

CTx:=cV| - + C10C11F4 

a<j):=ao(1-cio-F2 + vCio-cirF4) 

°xl:=CTo1 2 "C10CHF4 

ox=-8.275x 10 Pa 

°<t)i:=ao(1-cioF2-v-ciocirF4) 

aA = -1.013x 109Pa 

if the calculated stress is > .8 of the yield stress, then must use Et, Es, etc 

.8k = 78.8ksi 

KQ:- 

2 2 
a-=-'ax  + c<|>   -0x'0(j) 

a;= 135.505ksi 

a:=-Koax 

o= 147ksi 

£1 := — 1      E 

6, =4.898x 10   3 

er := k-f .8+ .2-tanh   5—E 

o = 98461.1psi 
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E:=-| 0.8+ 0.2-atanh 
E 

f    a       ^ 
5 4 

V   k      JJ 

£ = 4.898x 10 

z 
0.8+0.2-1 tanhl 5---E-4 

k        ) 

Es = 2.009x 104ksi 

Ej := E-j 1 -tanhj 5—8-4 

E, = 59.275ksi 

V= 1-   1-vU 
2     12 E 

v   = 0.366 

^ 

2-s2-E„ 
aa 

R' ■H]-\ 

Ki:=(l-K0 + K0
2) 

.      =1 

H4:= 

4-U-v    J.K, 

H3:=[(,-2.vp)-(2-vp).K0] 

H2:=[(2-vp)-(,-2.Vp).K0] 

Hi:=[l + H4 H2   -3.p-vp 
!)]] 
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(       H2'H3"H4^ 
1 + 

vpHl 

C3 = -0.748 

C2: 

H3 'H4 

H, 

H2   H4 

H, 

C0:= 

2      2 
CrC2-v pC3 

1 -v. 

a, := 

4 

3- 
°2 {  CA 

2 

^ s 
>    2 
'•R 

trial := 
alLl 

71 

trial = 0.173 

m:=l 

m 
trial2:= j—(m+ 1) 

trial2 = 1 iterate on m until trial is < trial2 

CXJ-LJ f  H-m ^* 

V  t-m ) a,Li 
Pm:=PaaC0' 

pm = 2931.4psi 

p = 2931psi 

iterate on p until pm is equal to p 
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Summary 

Axisymmetric Buckling 

Pm = 2931.4psi 

Lobar Buckling 

pcr = 9269.1psi 

General Instability 

p„ = 4651.4psi 
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Society of Naval Architects and Marine Engineers 

Submersible Vehicle Systems Design 

ksi:= lOOOpsi 

Input Section 

Lr := 2.66Sn 

Lb:=42.129n 

R:=17.3285n 

t := 0.263n 

RQ:=R+ .5-t 

RQ= 17.46in 

E:=30000ksi 

a   := 98.5ksi 

|i := 0.3 

Ring Stiffeners 

t    -=0.19811 
W 

depth := 1.025n 

bf:=0.763n 

d := 0.263n 

b2:=bf-tw 

Length between frames 

Length between bulkheads 

Radius of cylinder to centerline of shell 

shell thickness 

radius to outside of shell 

modulus of elasticity 

minimum yield stress of material 

Poisson's ratio 

thickness of web of ring stiffener 

total height of ring stiffener 

breadth of ring stiffener 

ring stiffener flange thickness 

breadth of ring stiffener minus the web thickness 
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c,:=.5. 

2 2 tw- depth   + b2-d 
first centroidal height of ring stiffener 

^   V depth + b2d 

c, =0.351in 

c2 := depth - C] second centroidal height of ring stiffener 

c2 = 0.674in 

h := c, - d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.088in 

R,. := R - .5 t - c2 radius to centroid of ring stiffener 

R,.= 16.523in 

Ar:= (twdepth + b2d)   cross-sectional area of ring stiffener 

Ar = 0.352in2 

V=l~ \bf'ci  -b2h  + twc2 J moment of inertia of ring stiffener about its centroidal axis 

I,. = 0.031 in4 

Combined Plate and Ring Stiffener 

A  -=Lft area of effective plate 

Asp := A   + Ar area of plate and ring stiffener 

Hc := depth + t height of combined plate and ring stiffener 

B, := Lf - tw plate length minus the web thickness 
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clc:=.5 
VHc

2 + Brt2+b2.d-(2-Hc-d) 

VHc + Bll + db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (RQ) 

clc = 0.4in 

R := R + .5h - clc radius to centroidal axis of combined ring stiffener and shell 

Rc= 16.972in 

Ie:=- e      3 
%-clc   -Br(c,c-t)   +bf-(Hc-clc)   _(bf-tw).(Hc-c]c-d) 

moment of inertia of combined plate and shell 

Ie = 0.187in 

a. Axisymmetric yielding 

V» 
Ar + tw-t 

B = 0.129 

1 

9 := 10-L12-V1 - |a2JJ   •  — 
50t 

R 

N:= 

9 = 1.605 

cosh(e)-cos(e) 
sinh(e) + sin(e) 

N = 0.774 
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ß:= 
UN 

50- 
vAr+tw-t; 

ß = 1.675 

f 

H:=- 
V 

sinh  —    cos   —   + cosh   —   -sin  — 

sinh(e) + sin(e) 

H = -0.833 

Py:= 
VR 

1 + H 
f0.85-B 

V   1 + ß 

py = 1927.7psi 

b. Lobar Buckling 

Pb:= 
2.42 E 

(,V) 

t 

2R 
_ 

l] 

_2R -fef. 
pb= 10369.943psi 

c. General Instability 

m:= 
TtR 

h 

n:= 1 
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Perlen) :=—7 
E-t 

R 

m 

2     ,      m 
n   - 1 + — 

2 J 

(n2 - l).E-T 

(2        lf R   Lr 

Given 

n> 1 

n2 := Minimiza pcr j, n J 

n2 = 2.974 n must be an integer 

n2im:= round (n2,0) 

n2int" 3 

^first ■ n2int100  if n2int = 

n2int ~ '   otherwise 

^first: 

2prime" 

f   n2first   ^ 

n2int 

n2int + l 

Vn2int+2y 

'Pcrlfn2   ■      ^ 

Pcr2 := 

iprime^ 

Pcrlf n2prime, 

Pcr/^prim^ 

Peril n2prime. 

12prime" 
3 

4 

V5y 

Pcr2: 

^11510.622^ 

4496.065 

6320.305 

V  9773.51 ) 

psi 

Per := min(Pcr2) 

pcr = 4496.1psi 
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Summary 

Axisymmetric Buckling 

p   = 1927.7psi 

Lobar Buckling 

pb = 10369.9psi 

General Instability 

pcr = 4496.Ipsi 
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MIT 13A Professional Summer Submarine Design Trends 

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS. 

Ref: "Hull Material Trade Off Study", D Fox, Jan 94 

Define input parameters: 

ksi= lOOOpsi 

Global Variable Inputs: 

e = o.o-in Eccentricity 

Material: 

GY = 98500psi 

E = 3000(ksi 

v =0.3 

Yield Strength 

Modulus of Elasticity 

Poisson's Ratio 

Geometry: 

D = 34.657in shell diameter 

R = 
D 

2 shell radius 

tf = .263in flange tickness 

LfS i 2.665n frame spacing 

Wf = .763in flange width 

U = = 42.129 in bulkhead spacing 

tw = .19Sn web thickness 

tp-= = 0.263n shell thickness 

K = .762in web height 
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tp 
R] := R - -t-      Frame Radius 

2 

Rl = 17.197in 

Af := tf wf       Frame flange, web area: 

A\v := twhw 

A := Af + Av Frame Area = Flange + Web 

A = 0.352in2 

PARTI SHELL YIELDING 

Von Sanden and Günther (1952) 

PNA Section 8.4 

B:= 
»w tp 

A + tw tp 
Area ratio 

0 :=Lf- 
311 .') 

2 
T4 

(R'p)2 

cosh(e) -cos(e) 

sinh(e) + sin(e) 

Slenderness parameter 

Deflection coefficient: 

ß:= 
2-N 

A + twtp 
■(.-,') 

0.25 

£ Frame flexability parameter: 

ß = 1.676 

r-.= V       2, 

1 + ß 
Frame deflection parameter: 

r = 0.269 
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sinh 

HM:=-2- 

ft 
— |-cos| — I + cosh 

\2)       V2 

f e\\ 

V ^ J 
sin 

sinh(e) + sin(e) 
Bending effect (mem): 

HM = -0.934 

HE:=-2- 
\ 0.5 s'nn 

f a\ 

V2. 

/o\ 

\2) 
cosh •sin 

vl -v   J 

HE = 0.368 

sinh(e) + sin(e) 
Bending effect (bend): 

K:= 
sinh(e) - sin(e) 

sinh(e) + sin(e) 
Bending efffect near frame: 

Perl fy <-Oy 

PQ <- 1 psi 

P. <- 1000 psi 

P2 <— 5000 psi 

delta <— 5 psi 

limit <— 1 psi 

conv <— 1 psi 

j^O 

while  j < 200 

for ie 0.2 

-P.R 

°<Wso *~~ [l +r-iHM + V-HE'I] 
tp 

-P.R 
aWsi*~ 

1 
_1 + r-iHM- v-HEi] 

tp 

-P.R 
a xxso *~ 

* 1.0.5 +r-H£i 
tp 

-P.R 

Oxxsi <— 
A 

0.5 - r-H E.'i 
tp 

-P.R 
l 

" r    / , \°-5 i 
°#fo *- i -r- J 1 tp L     li-v2 

a
 «Wifi ■«— 

-P.R 
l l - r- 1 ■■( 3 1 

0.5 

■K 
tp .   l.-.'J 
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a Qtfo ■ 

' Wtfi ' 

a 2 ' 

lP 

-PR 
l 

-PR 
l 

lP 

-PR 
l 

~~<V" 
° •(■too 

a«Ei 

° xxso 

° xxsi 

° it"Mb 

° iMfi 

o xxfo 

V. ° xxfi 

05- r(—-—|      K 

V i - ' 

-*2 

°  3   <-   O Sy3 

-*7 

°SYM<- (a l   -ci a2 + a2 J 

1 

(     2 2V 
^3   -0304 + 04 ) °SYF 

o SY <— max 
°SYM 

\\ 

°SYF 

stiess. <— o sy 

test. <— pfy - o sy1 

testp 
shel <— 

conv 

test, 
dav < 

break  if    stress. - fy   < limit 

PQ<-PJ   if shel dav > 0 

P2*-Pj   if shel dav < 0 

P1^V 
'P2-P0' 

OUt,   (r- j -  1 

out 
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Perl = 
' 1994.1 r 

Peril :=Pcrl0lpsi 

pcrit=1994.1psi 

PART 2 LOBAR BUCKLING 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

Collapse pressure: 

2.42E- 

PCLB:= 

,2.5 

D 

Lf *p 
 0.45   — U') 0.75 

PcLB=10369.9psi 

PART 3 GENERAL INSTABILITY 

Corrected Bryant Formula (1954) for better model test correlation 

Pressure loading is: 

P := 6000psi 

Compute effective frame spacing 

P 

KXP) 

\|,(,v) 
y = 0.717 

Comput e ck :ar length: 

Lc := Lf - tv 
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ti] := 0.5-^1 -y 

ri] =0.266 

Web thickness: 

ti2 := 0.5-yi+y 

n2 = 0.655 

tw = 0.198in 

Fl 

9 1 
cosh(n|-0J   - cos(n2-6) 

cosh(n]-0)sinh(nie)      cos(n2e)sin(n2e) 

n2 

must be less than 1.00 

Fi = 0.958 

Fi is almost a linear decreasing function for pressures from 1 to 10000 psi with an average value 

of 0.91. This will be used in the following analysis as the pressure is the unknown and therefore 

the above equations cannot be directly used. 

Fi := 0.96 

Leff-Lc'Fl + tw Effective shell plate length: 

Lgff = 2.566in 

Theoretical critical lobe number values are: 

i:=0..2 

(2\ 

n := 

v4y 

Aeff :=Lefftp 

2 
Aeff = 0.675in 

Circumferential Lobes 

Effective plate area: 
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m:= 71" 
Ls 

Longitudinal Lobes: 

m= 1.292 

hw + tf 

yna- 

"w 

v_2 
•Af- 

fK + ip^ 
•Aeff 

Aeff + Aw + Af 

Frame-plate neutral axis (ref web centre+ toward flange): 

yna=-0.237in 

Uses Parallel Axis Theorm: Icor = I + Ad2 

Moments of inertia for plate,flange,web: 

IP:= 
Lefftp" 

12 

twhw 

12 

Wf-tf 

12 

Ipcor :_ 'p + Aeff 
LV      2      , 

+ Yr 

nvcor :_ nv + Aw^ynaj 

!fcor := !f + Af 

Total: 

V      2 
Yna 

*eff :~ 'pcor + nvcor + 4c< Moment of Inertia corrected for neutral axis. 

Ieff =0.185in4 

The critical Elastic General Instability pressure is: 
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PcGI. == 
E-tr m w2- ■E-'eff 

'       R 
/   \2     .      m 

h) 
2        2 

+ m 

Min Pressure: 

PcGI = 

f \\ 1.15x 10 

4.46 x 103 

^ 6.253 x 103 

psi 

(2\ 

3 

,4, 

PcGI := mir(PcGl) 

pcGI = 4460.2psi 

ngi:=3 

Summary 

Axisymmetric Buckling 

Pcrit= I994.1psi 

Lobar Buckling 

PcLB=10369.^si 

General Instability 

PcGI = 4460.2psi 

ngi=3 

2 R3'.Lf 
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Analytic Solution 

Definitions 

ksi := 6.89475710 Pa 

E := 3000(ksi 

R:=17.3285n 

D:=2R 

o   := 98.5ksi 

L:=2.665n 

Lb:=42.129n 

H:=.3 

t := 0.263in 

Ring Stiffeners 

tw:=0.19Sn W 

H:= 1.025n 

b:=tw 

bf:=0.763in 

Modulus of Elasticity 

Radius of cylinder to centerline of shell 

Diameter of cylinder 

Yield strength 

Length between stiffener centers 

Distance between bulkheads 

Poison's ratio for Fe/Steel 

Shell thickness 

thickness of web of ring stiffener 

height of ring stiffener 

faying width of stiffener (from P&S for I beam stiffener) 

breadth of ring stiffener 

b2 := bf -1 breadth of ring stiffener minus the web thickness 

d := 0.263n 

Lbnash := L - bf 

ring stiffener flange thickness 

distance from flange edges 
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c, := .5. 
yH2 + b2d

2 

V   VH + b2d   j 
first centroidal height of ring stiffener 

c, =0.351in 

C2:= H - Cj second centroidal height of ring stiffener 

c2 = 0.674in 

h := c, - d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.088in 

R,. := R - .5t - c2 radius to centroid of ring stiffener 

R,.= 16.523in 

Ar := (twH + b2d)        cross-sectional area of ring stiffener 

Ar=0.352in2 

v^).(b, 1   ~b2h   +VC2 moment of inertia of ring stiffener about its centroidal axis 

lr = 0.031 in 

Aeff:=Ar 
(vT 

effective area of stiffener eqn [24a] from P&S 

Aeff = 0.369in 

a := ■ 
V:ff 
Lt 

ratio of effective frame area to shell area eqn [62] P&S 

a = 0.526 

ß := - ratio of faying width to frame spacing eqn [62] P&S 

ß = 0.074 
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Combined Plate and Ring Stiffener 

Ap:=L-t area of effective plate 

Asp := Ap + Ar area of plate and ring stiffener 

Hc:=H+t height of combined plate and ring stiffener 

Hc = 0.107ft 

Bl:=L-tw plate length minus the web thickness 

clc:=.5| 
VHc

2 + Brt2+b2-d.(2.Hc-d) 

twHc + Brt + db2 

neutral axis of combined plate and ring stiffener 

from outer fiber of plate (R0) 

clc = o.4in 

R„ := R - .5t - c lc radius to centroidal axis of combined ring stiffener and shell 

Rc= 16.797in 

'-T L.clc^Br(clc-l)3 + bf-(Hc-c,c)3^(bf-,w)-(Hc-clc-d)3 

moment of inertia of combined plate and shell 

Ie = 0.187in 

a. Buckling of unreinforced shells 

von Mises bucking pressure: 

n := 1    guess at number of waves around the circumference 
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Purl(n):= 
E.A l          1 

/        \4 

+ [ (■)' 1 ■/♦I !T)1 
2 

RJ 

[M?)1 2 
n + f—1 

2" 
2 

M.-M2). 

Given 

n> 1 

n j := Minimizapurj ,nj 

nj = 10.906       n must be an integer 

n]im:= round (nj,0) 

nlint=11 

1 prime- 

Sinf-,N 

"lint 

nlint+ ' 

<
nlint+2, 

^Purl^lprime^ 

Purl: 

Purlfnl prime, 

Purl^lprim^ 

Purlfnlprime3 

pur:=min(purl) 

pur = 9272.3psi 
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b. Axisymmetric Buckling 

Pcab: y<-0 

limit*- lpsi 

test <— lpsi 

conv <— lpsi 

j<-0 

while j < 1 

1    r ii<---v' -T 

n2<--Vi + y 

4 
F, «-- 

cosh(n,-9)   -coslr|2-9) 

9   cosh In, ]-9]sinhlr] j-9)      cos(r|2-9lsinlr|2-9 

n, 12 

cosh (n. ]-8]sinlr|2-9J      sinh (TJ |-9)cos(r|2-9) 

12 11 

coshfri |-9J-sinhlr| j-9)      coslr|2-9Vsinlri2-9) 

12 1l 

coslri2'9)sinlrt2-9j      cosh I n ]-8Vsinhlr| j-9] 

12 11 

2   cosh (n j-9J-5inhlTi j-9| coslr|2'91-sinf r|2'6) 

1, 12 

cosh (n |-9J-sin(r]2'ö) sinhfrj j-9]-cosln2'6) 

1 12 1l 

__   2   cosh (TI |-9)sinhlri ]-9J      cos(n,2'9)'s'n(l2'®) 

1l 12 

- P + (l - ß) F, 

denoml <— A F2
2 .F^.d-^U^, I + F4Ml-M + , 

l-V 1-M 

, 3 'l      I                        0.91 
denom2 <- | -   -A-   F2 - u-F4- I  

■J 1 -u 

J— + denoml - denom2 

2-E 

break   if [p 2-test| < limit 

lest <- pc2 

j<-j+ 1 

Pc2 
out   <  

u       conv 

out   *- j 
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Pcab = 

( A 2.141 x 10 

I        2        , 

Paxiy^PcabQ-'P5' 

paxiy=2140.7psi 

c. Asymmetric Collapse (Lobar buckling) 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

2.42 E 

PcLB: 
D 

2.5 

L t 
 0.45   — 
D JD (■V)' 

0.75 

pcLB= 10369.9psi 

d. General Instability of shells and rings 

X:= 
7I-R 

"Lb" 

PcGI<n) := — f 
Bt 

R 

\n2- lj-EI 

1 + — 
2; 
l\$ R3L 

n:= 1 

Given 

n> 1 

n2 := Minimiz^pcQj,n) 

n2 = 2.974        n must be an integer 
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n2int:= round (n2,0) 

12int: 

2prime' 

n2int - ] 

n2int 

n2int + l 

Vn2int+2y 

Pcgi2 := 

^PcG/n2prim^^ 

PcGlTn2prime1 

PcGlfn2prim^ 

PcGlfn2prim^ 

Pcgibryant := mir\Pcgi2) 

Pcgibryant = 4496. lpsi 

Summary 

Lobar Buckling 

pcLB= 10369.9psi 

Axi symmetric Buckling 

Paxiy=2140'7Psi 

General Instability 

Pcgibryant =4496. lpsi 

^int: 
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Appendix C: Codes for Test Cylinder 2.a 
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AMERICAN BUREAU OF SHIPPING 

Rules for Building and Classing Underwater Vehicles, Systems, and Hyperbaric Facilities 

Definitions 

ksi:= lOOOpsi 

E:=30000xsi 

v := 0.3 

Modulus of Elasticity 

Poisson's Ratio 

öy := 65500psi Yield strength 

Shell Parameters 

Ls := 1.366n 

Lc := 8.636n 

R:=8.4179n 

t := 0.0858n 

■.=-*♦; 

Distance between stiffeners 

Distance between bulkheads 

Mean radius of shell 

Thickness of shell 

Outer radius of shell 

R0 = 8.461 in 

Do^-R„ 

Ring Stiffeners 

tw := 0.044n 

depth := 0.531 Sin 

bf:=0.39S!n 

b2:=bf-tw 

Outer Diameter of shell 

thickness of web of ring stiffener 

height of ring stiffener 

faying width of stiffener (from P&S for I beam stiffener) 

breadth of ring stiffener 

breadth of ring stiffener minus the web thickness 
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d := 0.078n ring stiffener flange thickness 

Lu := L -1 Unsupported spacing between stiffeners 

Ljj = 1.322in 

L-ma^Lg,!^) 

Cl:=.5- 

L= 1.366in 

f 2        2^ tw-depth   +b2-d 

V depth + b2d 
first centroidal height of ring stiffener 

Cj =0.143in 

c2 := depth - c. second centroidal height of ring stiffener 

c2 = 0.389in 

h := cj - d distance from centroid of ring stiffener to nearest edge of flange 

R^ := R + .5-t + c2 radius to centroid of ring stiffener 

Rj = 8.85in 

A :=(twdepth + b2d) cross-sectional area of ring stiffener 

As = 0.051in2 

L := ( - ]•( bf-cj3 - b2h
3 + t   c2 ) moment of inertia of ring stiffener about its centroidal axis 

1,.= 1.219x 10_3in4 

Rf := R + .5-t + depth Radius to tip of the stiffener 

Rf=8.993in 
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Combined Plate and Ring Stiffener 

Le := min 
1.5-jRt N 

.  0.75 Lc   . 

Le= ].025in 

Ap:=Lt area of effective plate 

Asp:=Ap + As area of plate and ring stiffener 

H  := depth + t height of combined plate and ring stiffener 

Hc = 0.051ft 

Bl=L-tw plate length minus the web thickness 

'lc- 
twHc

2 + Brt2+b2d(2Hc-d) 

twHc + B,t + db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (R0) 

c]c = 0.174in 

Rp := R - .5-t + c]c radius to centroidal axis of combined ring stiffener and shell 

Re = 8.549in 

^-3 
Lclc3 " B,-(clc - t)3 + bf-(Hc - clc)3 - (bf - tw)-(Hc - c]c - d)3 

moment of inertia of combined plate and shell 

le = 0.008in4 

General Equations 

M:= 
Rt 

M = 1.607 
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>tM n4 
•M 

9 = 2.066 

Q>i 

N:= 

Q= 1.033 

cosh(2Q)-cos(2-Q) 

sinh(2Q) + sin(2Q) 

N = 0.942 

G:=2 
(sinh(Q)cos(Q) + cosh(Q)sin(Q)) 

sinh(2Q) + sin(2Q) 

G= 0.835 

H:= 
sinh(2Q) - sin(2Q) 

sinh(2Q) + sin(2Q) 

H = 0.631 

a Inter-Stiffener Strength (6.19.1) 

1) Inter-stiffener strength equations 

This equates to axisymmetric buckling 

A:=A„ External stiffeners      Effective area of plate and stiffener 

A = 0.046in2 

All-- |G 

A + tw-t + 
2N-t-L 

e 

F = 0.209 
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yield pressure at midbay and midplane of cylinder 

'*R 

1 -F 

Py = 844.1 psi 

This corresponds to Lobar buckling 

von Mises buckling pressure for a cylinder 

nv 

> 

2.42 E-     
URJ 

3 r 
U2)4. L 
 0.45 

_2-R {2-Rj   _ 

Pm = 29< *7.7psi 

maximum allowable working pressure for inter-stiffener strength 

Pm Pm 
    it  < 1 

2          P 
y 

V 
f         P    ^ 
'-     y 

I       2-PmJ 

6 V lf 7" > 
y 

3 

if l<-^<3 
py 

m 
— = 3.492 
py 

Pc = 703.4psi 

Paits:=Pc-8 

Paits = 562-7psi 
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2) longitudinal stress 

limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield 

No direct correlation to major failure modes 

\ 

y:= 

A-l 1-^ 
2y 

A + tw-t + 
2-N-t-L 

e 

pl:= 

2-ay-t 

R 
1 + 

(    12    ^ 

\\-v  ) 

•y-H 

Pj = 848.5psi 

maximum allowable working pressure for longitudinal stress 

Pals:=Pl-67 

Pa)s = 568.47psi 

b Overall Buckling Strength (6.19.5) 

X:= 
7T-R 

n:=l 

A2(n) := n   - 1 

AjCn) := 

A2(n) + 

E-t 
pnl(n):=—Aj(n)+ ^ 

E-Ie-A2(n) 

R   L 
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Given 

n> 2 

n2:=Minimiz^pn],nj 

n2 = 3.957        n must be an integer 

n2im:= round (n2,0) 

n2int = 4 

12first • n2im100 if n2in,= l 

n2int ~ '   otherwise 

^first = 3 

12primc 

f   n2f.rst   A 

n2int 

n2int + ' 

^n2int+2J 

Pn2:= 

nlf n2primeQ 

nlf^prime, J 

nlf n2prime, J 

nlf n2prime, J 

Pn := min(Pn2) 

pn = 6498.2psi 

Paol:=Pn-5 

Paol = 3.249x 10 psi 

12prime, = 4 

Pn2 

( 3^ 8.609x 10 

6.498 x 103 

7.797 x 103 

1.054x 104 

psi 
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Summary 

Axisymmetric Buckling 

P   = 844.1psi 

Lobar Buckling 

Pm = 2947.7psi 

General Instability 

pn = 6498.2psi 

n2int = 4 
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Germanischer Lloyd 

1988 Edition 

Chapter 2 - Submersibles 

MPa:=106Pa 

ksi := 10 psi 

General Definitions 

E:=30000xsi Modulus of Elasticity 

L, := 1.36än stiffener spacing 

L3 := 8.636n length of cylinder between bulkheads or lines of support 

s :=0.0858n thickness of shell 

R:=8.4179n radius to centerline of shell 

v := 0.3 Poisson's Ratio 

k:=65.5ksi minimum yield stress of material 

Stiffener Dimensions 

ef :=0.078n flange thickness 

df:=.I775n width of flange from web to edge of flange 

b2:=2df 

dw := 0.4539n Height of web 

ew := 0.044n web thickness 

b := cw width of stiffener ring in contact with shell 
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A, = effe   + 2-df) + e   d cross-sectional area of stiffener ring 1       i V w 1/       w   w 

,. 2 
Aj = 0.051in 

Hstiff:=dw+ef 

Hstiff=0.532in 

1 ewHstiff  +b2ef 

2 ew-Hstiff+b2ef 

cj =0.143in 

c2:=Hstiff-cl 

c2 = 0.389in 

h2 := C] - ef 

h2 = 0.065in 

h-\-3 
(e   + 2df-)cj  - (2df)h2 + ew-c2     Centroidal Moment of inertia of ring stiffener 

3. 4 
Ij = 1.219x 10     in 

e := c2 + .5s distance from stiffener centroid to center of shell 

e = 0.432in 

Effective Stiffener and Shell 

Letest :=b + V2R-s 

Letest = 31.645mm 

V= Letest   lf Letest - Ll 

Li   otherwise 

L£= 1.246in 

Effective length of shell (eqn 45a,b) 
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A,-e Les 
3 

le := -— + Ij + ——        Moment of Inertia of combined plate and shell 

l + 
Aj       '       12 

Les 

Ie = 7.732x 10  3in4 

Hstiffc:= Hstiff + s Total height °f stiffener and plate 

Hstiffc = 0.618in 

d,:=s 

bs,:=Le -ew 

1 evvHstiffc   + b2"ef  +bsj-s-(2-Hstiffc-s) 
Cjc :- — 

2 ewHstiffc+b2ef+bsls 

c,c = 0.435in 

c2c:=Hstiffc_clc 

c2c = 0.183in 

Ro := R - .5 s + c2c        radius of stiffener ring centroid including effect of Le 

Rj, = 8.558in 

R2 
A := A j  Modified area of stiffener ring 

«o2 

A = 0.049in2 

ei:=c2c+.5-s 

ej = 0.225in 
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2.4 Asymmetrie Buckling (Lobar but not named this) 

v=- 7I-R 

n:=2 initial guess 

ßnl(")-= 

(    2 
n 

+ 1 

^i     ; 

V2       2f   2     n2 
s -I n   - 1 + A.j 

12 R2.(,-v2) 

2     i       «i  2 
n   - 1 + .5-A.j 

Pn](n):=- 
Esßnl(n) 

R 

Given 

n>2 

n   := Minimiza pn| ,n) 

n  = 13.832       n must be an integer 

ngint:=round(ng'°) 

ngint = 14 

1gfirst • ngint-100 if ngint=l 

neint - *   otherwise 

gfirst = 13 

gpnme • 

"gfirst 

"gint 

ngint + ] 

^"gint + 2 

n gpnme" 

^13\ 

14 

15 
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Pn2: 

Pnl(ngprimeoy 

Pnl^gprime,) 

Pnl^gprime^) 

Pnl[ngprimej) 

pcr:=min(pn2) 

pcr = 2814.7psi 

3.3.3 General Instability 

L:=L3 Spacing between effective stiffeners 

x2-, 
7I-R 

\2 = 3.062 

ßn2(n):=- 

P0(n) 

Pl(n):= 

{n2 - 1 + 0.5^2
2)-(n2 + X2

2) 

E-s-ßn2(n) 

R 

(n2-,). EL 

Ro'-L] 

Pnla(n):=P0(n) + Pl(n) 

n:=2 

Given 

n>2 
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n2 := Minimiz^pn]a,nj 

n7 = 4.01 n must be an integer 

nT,„t := roun ^int • d(n2,0) 

12int: 

12prime' 

^2int-lA 

n2int 

n2int + ! 

v
n2int+2y 

Pnlaf n2prim&. 

Pg2:= 

Pnlaf n2prime] 

Pnlafn2prim^ 

Pnlaf n2prime, 

pg:=min(pg2) 

p   =6184.9psi 

PR2
: 

8.442x 10 

6.185x 10 

7.296x 10 

V9.812x 10 ) 

psi 

2.6 Symmetric Buckling (axisymmetric) 

More Definitions 

Default values for Elastic-Plastic Region (Eqns are below) 

E ■= E Secant Modulus = Young's Modulus for elastic region 

Ej:=E Tangent Modulus = Young's Modulus for elastic region 

v   := v Poisson's Ratio, elastic-plastic; = Poisson's ratio in elastic 
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a := 
177} 

2i>2 s   R 

shape factor 

a = 0.06- 

C5:=o-Lj calculation factor for symmetric buckling 

C5 = 2.066 

Past := 
2s   E 

R2.ff^7) 
critical pressure, elastic, calculation factor 

Past = 3772.56^Dsi 

Must guess pressure and then change when compared to pm at bottom of calculation 

G:= 
Past 

1 
C6:=--JT=G 

1 
C7:=— J] + G 

'      2 

C8:-C5C6 

C9:— C^Cy 

cosh(Cg)   -cos(c9) 

C5   cosh(c8)sinh(c8)      cos(c9)sin(c9) 

FT:= 

cosh(Cg)sin(c9)      sinh(Cg)cos(c9) 

C7 + C6 

cosh (Cg)sinh(Cg)     cos(c9)sin(c9) 
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cos(CgJsin(CpJ      cosh (CgVsinhl Cgi 

F3:= 

Q 

1 -v 
cosh(CgVsinh(Cg]      cosfCpl-sinlQO 

Q C, -6 W 

coshfCglsinfC^J      sinmCgVcoslQj 

C7 C6 

2   cosh(CgVsinh(Cgj      cosfCpjsinlCpj 
1 -v 

CA C, 

C 

(       ,,\ 

\       ^J s-L 

10- A b 
+ — + 

s-Lj      Lj 
(        b^ 1  

I       LlJ 

'IT 
0.91 

1 -v 

ao:=- 
-p-R 

Gx:=oo|- + C10Cll^ 

ax=-4.675 x 10 Pa 

G<j>:=Gc>-( l-C10-F2 + v.C10-CirF4 

ax = -5.789X 10 Pa 

Gxl:=Go| 2~C10"C11'F4 

oxl = -2.292x 10 Pa 

G<j)i:=Go-(1-cio-F2-v-cio-cirF4) 

CT., = -5.074X 10 Pa 
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°4> 
CTx 

.8k = 52.4ksi 

If the calculated stress is greater than .8k then must find E,, Es, etc. 

_       _ 

(Tj = 77.165ksi 

CJ:=-K0GX 

s, := — 

E] =2.799x 10 

a:=k[ .8+ .2-tanh[ 5— e,-4 

a = 65290.1psi 

E := }.8+ 0.2atanh   5- 

E = 2.799x 10 

V    k 

3 

E 
0.8 + 0.2J tanhl 5— • E -4 

Es = 23254. lksi 

Ej-E (i--*(»£. E-4 

Ef = 480.6ksi 

V= i-l-v 
2    12        )   E 

vp = 0.345 
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E<- ^ 

2-s -E„ 

R2j3-( 1 - vp
2 

Paa:= 

Kl:=^l-K0 + K0 

Et 

H4:= 

H3:= 

4-ll-Vp J.K, 

H2:= 

= [(l-2.vp)-(2-vp).K0] 

H 1 •= 

C:= 

1 + H4 H2   -3.^1-vp 

1 + 
H2'H3'H4^ 

v„H 
p'"i ; 

Co = -0.764 

/ 

C2:= 

C2 = 

\ 

1 
H3   H4 

H, 
V 1     J 

0.167 

Cj:= 

/ 2      ^ 
H2   H4 

1 
H, 

C,= 

v i   y 

0.555 

C0:= 
cr<VVc32 

1 -v. 

C0 = 0.163 
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a, := 

trial := 

4(—| 

3- 
°2 (     c \ 

p C, 

2 

> s' 
»    2 

■R 

arLj 

trial = 0.353 

Iterate on m until trial <= trial2 

m:= 1 

m 
tria!2:= f — (m + 1) 

tria!2 = 1 

Pm:=PaaC0' 

cxi-L 

V  7t-m 

I'M |       1 
+ - 

4 

(   Tt-m  ^ 

°rLiy 

pm= 1029.8psi 

p - 103Q5S1        iterate on pressure until pnl is equal to p 

Summary 

Axisymmetric Buckling 

pm= 1029.8psi 

Lobar Buckling 

pcr = 2814.7psi 

General Instability 

pg = 6184.9psi 
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Society of Naval Architects and Marine Engineers 

Submersible Vehicle Systems Design 

ksi := lOOOpsi 

Input Section 

Lf:=1.366n 

1^ := 8.636n 

R:=8.4179n 

t:=0.0858n 

RQ:=R+ .5-t 

RQ = 8.461in 

E:=30000ksi 

a   := 65.5-ksi 

|i := 0.3 

Ring Stiffeners 

tw := 0.044m 
W 

depth :=0.5319n 

bf:=0.39Sin 

d := 0.07Sn 

b2:=bf-tw 

Length between frames 

Length between bulkheads 

Radius of cylinder to centerline of shell 

shell thickness 

radius to outside of shell 

modulus of elasticity 

minimum yield stress of material 

Poisson's ratio 

thickness of web of ring stiffener 

total height of ring stiffener 

breadth of ring stiffener 

ring stiffener flange thickness 

breadth of ring stiffener minus the web thickness 
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Cl:=.5- 

( 2 l\ 
tw- depth   + b2-d 

twdepth + bjd 

cj =0.143in 

first centroidal height of ring stiffener 

c2 := depth - cj second centroidal height of ring stiffener 

c2 = 0.389in 

h := c j - d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.065in 

Rj := R + .5-t + c2 radius to centroid of ring stiffener 

R,. = 8.85in 

Ar := (twdepth + bjd)   cross-sectional area of ring stiffener 

Ar=0.051in2 

lr :=   - H bf-cj  - b2-h  + twc2 J moment of inertia of ring stiffener about its centroidal axis 

1,.= 1.219x 10_3in4 

Combined Plate and Ring Stiffener 

A  •= Lj-1 area of effective plate 

Asp := A  + Ar area of plate and ring stiffener 

Hc := depth + t height of combined plate and ring stiffener 

Bj := Lf - tw plate length minus the web thickness 
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clc:=.5| 
tw.Hc

2 + Brt2
+b2.d.(2.Hc-d) 

twHc + Bjt + db2 

neutral axis of combined plate and ring stiffener 

from outer fiber of plate (RQ) 

c]c = 0.174in 

R := R - .5t + c, radius to centroidal axis of combined ring stiffener and shell 

R^ = 8.549in 

Lf clc3 - Br(clc - t)3 + bfK - clc)3 - (bf - SvMH, - clc - d)3 

moment of inertia of combined plate and shell 

ie = 0.008in 

Axisymmetric yielding 

B:= 
V1 

Ar + tw-t 

B = 0.069 

9 := 10- Mivir 
V2-Ry 

50t 

R 

9 = 2.066 

N: 
cosh(e)-cos(e) 
sinh(e) + sin(e) 

N = 0.942 
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ß:= 
UN 

T     Ar + t.„-t 50._ V    r     w   J 
R 

ß = 1.947 

H:= 

3sinh  —   cos  — 
\2)      {2 

+ cosh 
fa\ 

\*J 
sin  — 

\2 

sinh(e) + sin(e) 

H =-0.681 

VR 

y      ro.ss-i^ 
1 + H 

V   1 + ß 

p   =814.733psi 

Lobar Buckling 

Pb:= 
2.42 E 

U') 

t 

2R 

r 

_2R -fe)1 
pb = 2.948x 10 psi 

General Instability 

7I-R 
m:= 

h 

n:= 1 

164 



Et 
Perl*") := Y ( 

(n2-lW 

2    ,     m 
n   - 1 + — 

(2        2f R   Lf 

Given 

n> 1 

n2 := Minimize pcr|, nj 

n2 = 3.957 n must be an integer 

n2int:=round(n2'°) 

n2int = 4 

^first • n2int-100 if n2im=l 

n2int - *   otherwise 

12prime' 

n2first 

n2int 

n2int + ] 

Vn2int+2y 

Pcr2 := 

^Pcrlf^prime^ 

Peril n2prime. 

Peril n2prime, 

Pcrlf n2prime, 

in(Pcr2) 

p    = 6498.2psi 
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Summary 

Axisymmetric Buckling 

p   = 814.7psi 

Lobar Buckling 

pb = 2947.7psi 

General Instability 

pcr = 6498.2psi 
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MIT 13A Professional Summer Submarine Design Trends 

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS. 

Ref: "Hull Material Trade Off Study", D Fox, Jan 94 

Define input parameters: 

ksi= 100Q)si 

Global Variable Inputs: 

e = 0.0-in Eccentricity 

Material: 

öy = 65500psi 

E = 3000(ksi 

v =0.3 

Geometry: 

R=8.4179n 

D = 2R 

Lf = 1.36än 

Ls = 8.636in 

tp = 0.0858n 

tf = 0.078n 

wf = 0.399fn 

tw = 0.044n 

hw = 0.4539n 

Yield strength 

Modulus of Elasticity 

Poisson's Ratio 

shell radius 

shell diameter 

frame spacing 

bulkhead spacing 

shell thickness 

flange tickness 

flange width 

web thickness 

web height 
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Compute areas: 

Rf:=R+-ü 
2 

Frame Radius 

Rf = 8.461 in 

Frame flange, web area: 

Af :=tf Wf 

A\v := t\v'nw 

A := Af + Av Frame Area = Flange + Web 

A = 0.051 in2 

PART 1 SHELL YIELDING 

B:= 
tw'tp 

A + tw-tp 

Area ratio 

B = 0.069 

:=Lf- 
;-(,-v>) 

Slenderness parameter: 

6 = 2.066 

N 
cosh(e)-cos(e) 
sinh(e) + sin(e) 

Deflection coefficient: 

N 

2-N 

A + tw-tp 

-,0.25 

•U2) J**r Frame flexibility parameter: 

ß = 1.947 
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T:= 

l -- 
V        2y 

-B 

1 + ß 
Frame deflection parameter: 

r = 0.265 

HM:=-2" 

sinh  —  -cos  — + cosh 
QS

\   ■ fe 
sin 

sinh(e) + sin(e) 
Bending effect (mem): 

HM = -0.835 

f    -     x0.5 sinh 
HE:=-2- 

\\-v" ) 

HE = 0.557 

sinh(e) - sin(e) 

sinh(e) + sin(e) 

'e^ 
\^J 

cos| — I - cosh sin 
,2y 

sinh(e) + sin(e) 
Bending effect (bend): 

Bending efffect near frame: 
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P crl := fy <-  Oy 

P0 «- 1 psi 

Pj <- 1000 psi 

P2 «- 2000 psi 

delta <- 5 psi 

limit<— 1 psi 

conv <— 1 psi 

while j < 20 

for i-s 0. 2 

rl«60 ' 

-PR 

rtosi< 

~- -[l+r-iHM +v-HEt] 
lp 

PiR 

r— [i + riHM-vHEi] 

-PtR 
< —i0.5 + r-HE' 

-PR 
•i0.5-r-HEt 

rtofo ' 

1 «fr 

°3Ddb*- 

-P.R 
l 

-P.R 
l 

-P.R 
l 

axxfi<- 
-P.R 

l 

i -r 

l -r 

0.3 - r 

0.5 + r 

1  +  V 

0.5 
■K 

05 

(    3     >| 

\l~ v  J 

(    3 

0.5 

0.5 
K 

1-v 

^WBO^ 

rWBi 

0Sy<~ 

°xxfo 

a 1 <- ° sy 

CT2<-0Sy, 

a 3 <~ cr sy, 

o 

2 

O 4 *- O Sy 
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ÜSYM<- ( 
2 A [a i   -a [-a 2+ 02 ) 

(■ 
2 2 

/ 
a SY <— max 

CSYM \\ 

V ^SYF )J 

stress. <— a SY 

test.«- ify-csYi 

test. 
shel<- 

dav <- 

conv 

test. 

conv 

break if  IstresSj - fy  < limit 

P0<-P.   if sheldav>0 

P2^P,   if sheldav<0 

pi^V 

j<-j+ 1 

iP2-P0' 

out. <— j - 1 

out 

Perl 
819.181 

14 

Peril :=Pcrl0'lpsi 

Peril = 819.2psi 
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PART 2 LOBAR BUCKLING 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

Collapse 

pressure: 

2.42E- 

PcLB- 

fx ^5 

tr Lf I'D 
 0.45   — 

VD       ^D; 
■(,-v2) 

0.75 

PcLB = 2947.7psi 

PART 3 GENERAL INSTABILITY 

Corrected Bryant Formula (1954) for better model test correlation 

Pressure loading is: 

P:=p-gDtSF. g" 

P= 1786.13 lpsi 

Compute effective frame spacing 

P 
Y:=IE" Vv) 

y = 0.473 

Compute clear length: 

Lc==Lf- -tw 

n] :=0.5>/l -7 

n] =0.363 
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n2: = o.sVT + 7 

n2 = 0.607 

Fi:= 
cosh(n j •)' - cos(n2- *? 

cosh(ni •0Jsinh(n ,e) cos (112 •8jsin(n2 

n2 

°) 

F) = 0.894 must be less than 1.00 

F] is almost a linear decreasing function for pressures from 1 to 2000 psi with an average value 

of 0.90. This will be used in the following analysis as the pressure is the unknown and therefore 

the above equations cannot be directly used. 

F] :=0.90 

Leff :=LcFl + lv Effective shell plate length: 

l^ff = 1.234in 

Theoretical critical lobe number values are:    i := o.. 2 

Aeff := Leff lp Effective plate area 

Aeff =0.106in : 

Circumferential Lobes 

f2^ 

n := 3 

v4y 

Longitudinal Lobes: 

m:=7i- 
R_ 

m= 3.062 
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hw + tf 

yna: 
V      2 

Af 
h\v + tp 

■Aeff 

Acff + Aw + Af 

Frame-plate neutral axis (ref web centre+ toward flange): 

yna = -0.129in 

Uses Parallel Axis Theorm: Icor = I + Ad2 

Moments of inertia for plate,flange,web: 

b 
Leff'p 

12 

lw 
twhw 

12 

In- 

t 3 
Wf tf 

12 

!pcor := !p + Aeff 
tp + hw ^ 

+ yr 

'wcor:= h\ + Aw(ynaj 

'fcor := If + Af 
ftf+hv 

V      2 

'eff:= Ipcor + I\vcor + 'fcor 

Ieff=7.711x 10  3in4 

yna 

Moment of Inertia corrected for neutral axis. 

Determine Rf as radius to centroid of combined plate and stiffener: 

The critical Elastic General Instability pressure is: 

PcGI. = 
Etr w2- EIeff 

i        R 
(   \2     ,      m 

(";) 
2        2 

+ m 
3 

R   Lf 

174 



Min Pressure: 

i <0 2.039x 10 

PcGI = 8.546x 103 

v6.379x 103, 

psi 

(2 \ 

n := 3 

14, 1 

PcGI := min(PcGI) 

PcGI = 6378 9psi 

Summary 

Axisymmetric Buckling 

Pcrit = 819.2psi 

Lobar Buckling 

PcLB = 2947.7psi 

General Instability 

PcGI = 6378.9psi 
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Analytic Solution 

Defintions 

ksi:= 6.894757106Pa 

E := 3000(ksi Modulus of Elasticity 

R:=8.4179n Radius of cylinder to centerline of shell 

D := 2R Diameter of cylinder 

o   :=65.5ksi Yield strength 

L:= 1.366m Length of supported cylinder 

Lf, := 8.636n Distance between bulkheads 

p:=.3 Poison's ratio for Fe/Steel 

t := 0.0858n Shell thickness 

Ring Stiffeners 

tw := 0.044n thickness of web of ring stiffener 

H:=0.5319n height of ring stiffener 

b:=tw faying width of stiffener (from P&S for I beam stiffener) 

bf:=0.39Sin breadth of ring stiffener 

b2:=bf-,w breadth of ring stiffener minus the web thickness 

d := 0.078in ring stiffener flange thickness 

^nash := L - bf distance from flange edges 
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c,:=.5- 
yH2 + b2-d2 

twH+b2d 
first centroidal height of ring stiffener 

cj =0.143in 

c2:=H-Cj second centroidal height of ring stiffener 

c2 = 0.389in 

h := c, - d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.065in 

Rj. := R + .5t + c2 radius to centroid of ring stiffener 

Rr=8.85i 

Ar := (tw-H + b2-d) cross-sectional area of ring stiffener 

Ar=0.051in2 

VH^Kbf-cl3-b2-h3 + Vc23 moment of inertia of ring stiffener about its centroidal axis 

lr= 1.219x 10  3in4 

Aeff:=Ar- effective area of stiffener eqn [24a] from P&S 

Aeff = 0.049in 

veff 
a := ■ 

Lt 
ratio of effective frame area to shell area eqn [62] P&S 

a =0.415 

"■I 
ratio of faying width to frame spacing eqn [62] P&S 

ß = 0.032 

177 



Combined Plate and Ring Stiffener 

Ap:=Lt area of effective plate 

Asp:=Ap + Ar 

Hc := H + t 

area of plate and ring stiffener 

height of combined plate and ring stiffener 

Hc = 0.05lft 

Bl:=L-tw plate length minus the web thickness 

c]c:=.5l 
tw-Hc

2 + B,t2 + b2d(2Hc-d) 

twHc + Bj-t + db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (R0) 

c]c = 0.174in 

Rc := R - .5t + clc radius to centroidal axis of combined ring stiffener and shell 

Rc = 8.549in 

e      3 
Lclc   -B,-(cIc-t)   +bf.(Hc-cIc)3-(bf-tw).(Hc-clc-d)3 

moment of inertia of combined plate and shell 

le = 0.0iin4 

a. Buckling of unreinforced shells 

n:= 1 guess at number of waves around the circumference 

Puri(n) 
E-t 

R 

n   + .5- 
7T-R 

(n-R) 
4 

U + 
r                            ->2 

/        \2 2    (n-R) 
n   +     

V  L 

(-2 

.2-(,-p2). 

2 
n   + 

7I-R 

L 
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Given 

n> 1 

rij :=Minimizapur],nJ 

nj = 13.812       n must be an integer 

nHnt:= round (nj,0) 

nlint=14 

'l prime" 

'"lint-1^ 

"lint 

nlint+ l 

v
nlint+2y 

Purl( nl prime. 

Purl 

Purl   "I I prime. 

Purl   "I 1 prime. 

Purl   "I 1 prime. 

Pur := min(Purl) 

p    =2.816x 10 psi 
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b. Axisymmetric Buckling 

Pcab: y *- 0 

irnit«- lOpsi 

test <- Opsi 

conv +- lpsi 

j«-o 

while j < 20 

ni *- -VT^T 

i2<--Vi_n; 

L e^HV)- 

r ,   4 coshjq|-6)   - cos(n29) 

8   coshlrij ■e)-sinh(ii|-9) cos(n2'6)'s,n(,l2'G) 

ii n2 

cosh(ri|'e)sin(n20)      sinhfn, i-öVcos^-O) 

 ]|2_ nj  

coshfii |-oVsinh(T| j-o)     cos(n2e)'sin(n2e) 

cos(tl2e)'sin(Tl2'0)      cosh(p |-6Vsinh(li je) 

~~ ~ 12 1l 

t       2   cosh(n,|'0)'sinh(r|i'0)      cos(n2°)sin(n2°) 

1l 12 

cosh(n |'ö)sin(ri2B)      sinh(n i-9Vcos(r]2e) 

~1     i2 nj  

!_    2   cosh(n|6)sinh(n|'6)      cos(r|2e)sin(Tl2-9) 

ii n2 

■f." 
a + ß + (l-ß)-F, 

dcnoml 4- A F2
2+F2-F4-(l-2-M) 

U'V 
+ F4

2il-M + M
2J 0.91 

1-M 

denom2 *- | — |-A- 

Pc2" 

F2 - M'F4 

1-M 

°>U 

+ denornl - dcnom2 

break   if |pc2 - test I < limit 

2-E 

test <- pc2 

j<-j+ 1 

Pc2 
out   <  

u       conv 

out   <- j 
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'875.9^ 
Pcab =       0 V   2    J 

Paxiy^PcabQ^P5' 

paxiy=875.9psi 

c. Asymmetric Collapse (Lobar buckling) 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

Collapse pressure: 

2.42 E- 

PcLB:= 
D 

2.5 

-o.4sji)(,vr 
D 

pcLB= 2.948x 10 psi 

d. General Instability of shells and rings 

X:=- 
7I-R 

4 

n:= 1 

PcGl<n):-  „    , 
Et 

R 

(n2-l)-E, 

A 
2     ,      \ 

n   - 1 + — 
V 2y 

(n2 + .
2) 

2 R3-L 

Given 

n> 1 
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n2 := Minimiz^pcQj,nj 

n2 = 3.957        n must be an integer 

n2int:= round (n2,0) 

n2int = 4 

^prime"1 

]2int 

n2int 

n2int + » 

rn;„, + 2 V"2int 

PcGlfn2prim^ 

PcGlfn2prime] 

csi2 * / \ 
PcG/n2prime2J 

PcGlfn2prime5] 

Pcgibryant := mir(Pcgi2) 

3 
Pcgibryant = 6498x 10 Psi 

Summary 

Lobar Buckling 

PcLB = 29477Psi 

Axisymmetric Buckling 

Paxiy=875-9Psi 

General Instability 

Pcgibryant = 6498.2psi 

n2int = 4 
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Appendix D: Codes for Test Cylinder 2.c 
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AMERICAN BUREAU OF SHIPPING 

Rules for Building and Classing Underwater Vehicles, Systems, and Hyperbaric Facilities 

Definitions 

ksi:= lOOCpsi 

E := 3000(ksi Modulus of Elasticity 

v:=0.3 Poisson's Ratio 

a   := 15700(bsi Yield strength 

Shell Parameters 

Ls := 3.25<Sn Distance between stiffeners 

Lc:=115.533n Distance between bulkheads 

R:= 18.882n Mean radius of shell 

t:=0.331n Thickness of shell 

R0 := R + - o             2 
Outer radius of shell 

R0 = 19.051 in 

Do:=2Ro Outer Diameter of shell 

Ring Stiffeners 

tw:=0.121n thickness of web of ring stiffener 

depth :=2.315n height of ring stiffener 

b:=tw faying width of stiffener (from P&S for I beam stiffener) 

bf:=1.552n breadth of ring stiffener 

b2:=bf-tw breadth of ring stiffener minus the web thickness 
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d := 0.305n ring stiffener flange thickness 

L. := L -1 Unsupported spacing between stiffeners 

L,, = 3.129in 

L-ma^Lg,!^) 

c,:=.5. 

L=3.256in 

tw-depth   +b2d 

tw-depth + b2d 

cl = 0.558in 

first centroidal height of ring stiffener 

c2 := depth - cj second centroidal height of ring stiffener 

c2 = 1.757in 

h := cj - d distance from centroid of ring stiffener to nearest edge of flange 

Rg := R - .5-t - c2 radius to centroid of ring stiffener 

Rg = 16.957in 

As := (twdepth + b2-d)  cross-sectional area of ring stiffener 

As = 0.729in2 

1^=  -   fbf-cj  -b2h  + tw-c2 ) moment of inertia of ring stiffener about its centroidal axis 

Ir=0.312in4 

Rf := R - .5-t - depth Radius to tip of the stiffener 

Rf = 16.398in 
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Combined Plate and Ring Stiffener 

1.5-VR-t 
L„ := min 

{ 0.75^ J 

Le = 2.442in 

Ap:=Lt 

Asp := Ap + As 

Hc := depth + t 

Hc = 0.221ft 

B, :=L- Kv 

effective plate length 

area of effective plate 

area of plate and ring stiffener 

height of combined plate and ring stiffener 

plate length minus the web thickness 

lc 
tvvHc

2+B,t2 + b2d(2Hc-d) 

twHc+ B,t+ db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (R0) 

c]c = 0.937in 

R^. := R + .51 - clc        radius to centroidal axis of combined ring stiffener and shell 

Rc= 18.114in 

L:= — Lclc3 - B,-(c,c - t)3 + bf-(Hc - clc)3 - (bf - tw).(Hc - clc - d)3] 

moment of inertia of combined plate and shell 

Ie= 1.946in4 

General Equations 

M:= 

M = 1.291 

186 



9:= •U2)- ■M 

9 = 1.659 

N:= 

Q = 0.83 

cosh(2Q)-cos(2Q) 

sinh(2-Q) + sin(2Q) 

N = 0.797 

G:=2- 
(sinh(Q)cos(Q) + cosh(Q)sin(Q)) 

sinh(2-Q) + sin(2Q) 

G = 0.926 

H:= 
sinh(2Q) - sin(2-Q) 

sinh(2Q) + sin(2Q) 

H = 0.435 

Inter-Stiffener Strength (6.19.1) 

1) Inter-stiffener strength equations 

yield pressure at midbay and midplane of cylinder 

This equates to axisymmetric buckling 

A:=AC 
_R_ Effective area of plate and stiffener   (Internal stiffeners) 

A = 0.811in2 

187 



F:= 

1 IG 
^        2, 

A + tw-t + 
2N-t-L 

F = 0.335 

y   i-F 

Py = 421 l.lpsi 

von Mises buckling pressure for a cylinder 

This corresponds to Lobar buckling 

2.42 E 
2R 

3 r 

(.- V)4. L 

2R 
-0.4S| - =r 

Pm= 13410.8psi 

Pc:= 

P P m   .„    m     if < , 

py ,__3L|   if ,<^<3 

V 2-P, m, 

5 „    ., *m 
— Pv   if — > 3 
6 y    P 

Pc = 3509.3psi 
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maximum allowable working pressure for inter-stiffener strength 

Paits:=Pc-8 

Pait   =2807.4psi 

2) longitudinal stress 

limiting pressure corresponding to the longitudinal stress at stiffeners reaching yield 

No direct correlation to major failure modes 

y:=- 

A + tw-t + 
2-N-t-L 

e 

2-cyt 

R 
1 + 

f   12   ^2 

■Y-H 

vl -v   J 

P] = 3566.1psi 

maximum allowable working pressure for longitudinal stress 

Pals:=PP67 

Pals = 2389.29psi 

b Overall Buckling Strength (6.19.5) 

K:=- 
7I-R 

n:=l 

A2(n) := n   - 1 
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A,(n):= 

A2(n) + — 
z 2 

(„M2 

, ,      Et                 E-Ie-A2(n) 

Pnl(n):=Y'Al(n) + 3  
R   L 

Given 

n>2 

n2:=Minimizapn] ,n) 

n2 = 2  n must be an integer 

n2int:= round (n2,0) 

n2int - 2 

n2first:= n2inf100 if n2int=1 

n2int ~ '   otherwise 

'  n2flrst   ' 

n2int 
n2prime = 

n2int + X 

,n2int+2, 

'Pnl(^n2Primeö)
> 

Pnlfn2prime,) 

Pn2:= 

Pnlfn2primeJ 

^Pnl(n2prime3^ 

Pn := min(Pn2) 

Pr = 8642. lps 

12first = 1 

Pn2 

1.768x 10 

8.642x 10 

2.136x 10 
psi 

3.995 x 10 
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Summary 

Axisymmetric Buckling 

P   =4211.1psi 

Lobar Buckling 

Pm= 13410.8psi 

General Instability 

pn = 8642. lpsi 

n2int = 2 

191 



Germanischer Lloyd 

1988 Edition 

Chapter 2 - Submersibles 

MPa:= 106Pa 

3 
ksi := 10 psi 

General Definitions 

E:=3000(ksi Modulus of Elasticity 

Lj :=3.25än stiffener spacing 

L3:=115.532n length of cylinder between bulkheads or lines of support 

s := 0.337in thickness of shell 

R:= 18.882n radius to centerline of shell 

v := 0.3 Poisson's Ratio 

k:= 157-ksi minimum yield stress of material 

Stiffener Dimensions 

ef:=0.305n flange thickness 

df:=0.7125n width of flange from web to edge of flange 

b2:=2-df 

dw := 2.01in Height of web 

ew:=0.121n web thickness 

b:=ew width of stiffener ring in contact with shell 
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Ai := ef(e „ + 2df) + e -d,„      cross-sectional area of stiffener ring 
1 I V   W 1/ W    W ^ 

Aj =0.729in 

Hstiff:=dw+ef 

Hstiff=2.315in 

1   VHstiff  +b2ef 
ci :=-• 

2    ewHstiff+b2ef 

Cj =0.558in 

c2:=Hstiff-cl 

C9 = 1.757in 

h2:=c1-ef 

h2 = 0.253in 

h-= (ew+2df)c1  - (2df)h2 + ew-c2     Centroidal Moment of inertia of ring stiffener 

. 4 
Ij =0.312in 

e := c2 + .5s distance from stiffener centroid to center of shell 

e= 1.925in 

Effective Stiffener and Shell 

Letest:=b + >f2^ 

Letest=93-838mm 

Le:= Letest  if Letest < Lj   Effective length of shell 

Li   otherwise 

Le = 3.256in 

193 



Aj-e Les 
3 

Ie := — + I, + ——        Moment of Inertia of combined plate and shell 

] + 
A,        '       12 

Le-s 

Ie= 1.946in4 

Hstiffc:= Hstiff + s Total height of stiffener and plate 

Hstiffc = 2652in 

dj := s 

bs,:=Le-ew 

1 ewHstiffc   +b2ef  +bsls(2Hstiffc-s) 
c]c:= —  

2 ewHstiffc+b2ef+bsrs 

Cjc = 1.715in 

c2c:=Hstiffc~clc 

c2c = 0.937in 

1^ := R + .5s - c2c       radius of stiffener ring centroid including effect of L£ 

R0= 18.114in 

R2 
A := A,  Modified area of stiffener ring 

A = 0.792in2 

e,:=c2c+.5-s 

e] = 1.105in 
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2.4 Asymmetrie Buckling (Lobar but not named this) 

V=- 
7I-R 

n:=2 initial guess 

ß„l(n):= 

(    2        ^ n 
— + 1 

2 

■2       if 2 
s •  n   - 1 + A.1 

12- R2-(l-v2) 

2     ,      <, 2 
n   - 1 + .5-A.j 

Pnl(n):=' 
Esßnl(n) 

R 

Given 

n>2 

ng :=Minimiz^pnl,nj 

n  =10.171       n must be an integer 

ngint := round (n    o) 

ngint = 10 

^gfirst' ngint-100 if ngint =1 

neint ~~ *   otherwise 

n gpnme ■ 

"gfirst 

ngint 

ngint + l 

Vngint + 2; 

n gpnme' 

r9\ 
10 

li 

V12y 
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Pn2:= 

pnlf ngprime0 

'cr ■ 

Pnl^gprime,) 

Pnl^gprimej) 

Pnl(ngprimej) 

in(Pn2) 

pcr= 12139.3psi 

3.3.3 General Instability 

L:=L3 Spacing between effective stiffeners 

x2-, TtR 

ßn2(") 

n   -1 + 0.SX2 )\n   +l2 
2        2 2 

P0(") := 

P](n):= 

Esßn2(n) 

(n2-,). EL 

RoLl 

Pnla(n):=P0(n) + Pl(n) 

n:=2 

Given 

n>2 

n2:=Minimiz^pn]a,n) 

n2 = 2  n must be an integer 
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n2int:= round (n2,0) 

^int: 

2prime" 

'2int ~ 

n2int 

n2int + ] 

Vn2int+2; 

Pnlaf n2prime^ 

Pg2:= 

Pnlaf n2primej 

Pnlafn2prim^ 

Pnlaf n2prime, 

in(Pg2) 

p   = 9702.4psi 

Pg2: 

1.768x 10 

9.702x 10 

2.418x 10 

4.525x 10 

psi 

2.6 Symmetric Buckling (axisymmetric) 

More Definitions 

For Elastic-Plastic Region (Eqns are in the program) 

E := E Secant Modulus = Young's Modulus for elastic region 

E(:=E 

v   '= v 

Tangent Modulus = Young's Modulus for elastic region 

Poisson's Ratio, elastic-plastic; = Poisson's ratio in elastic 

a := 
J^T) 
,v 

shape factor 

a = 0.02- 
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C5 := a-L, calculation factor for symmetric buckling 

C5 = 1.659 

2-s *E 
>ast :=    ,. critical pressure, elastic, calculation factor 

past = 11567.346?si 

G:=^- 
Past 

C6:=^yfT^G 

C7:=— JTTG 
1     2 

C8:-C5C6 

C9:-C5C7 

Fl:= 
cosh (Cg)   - cos (Cg) 

C5   cosh(Cg)sinh(Cg)      cos(c9)sin(c9) 

% + Öj 

cosh (c8)-sin(c9)      sinh(c8)cos(c9) 

F ^ + C6 
2 cosh(Cg)-sinh(Cg)      cos(c9)sin(c9) 

% + Gj 

cos(c9)-sin(c9)     cosh(Cg)sinh(c8) 

F = P^       °7       " c6 
3 J , _ v

2   cosh(Cg)-sinh(Cg)      cos(c9)-sin(c9) 

C6 + C7 
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coshfCgVsinfQO      sinhlCgJcosfCg) 

F4:= 
C 

2   coshfCgVsinmCgj      coslQjVsinfQj) 

Cn 

v \    A 

2 / s-Li 

'10 = 
A b 

+ — + 
sLj      Lj 

(        *>} 

C„:= 0.91 

1 -v 

-p-R 

Gx:=öo| - + ciocirF4 

V=Go{ 1-C10'F2 + vC10CHF4 

0xl:=tV| 2~C10'C11"F4 

ax=-1.168x 10 Pa 

°$i := Go{1"cioF2-vC10CHF4) 

d(j) = -1.259x 10 Pa 

K0:= 
a* 

2 2 
CTi:=-JCTx + a<fr ~axa$ 

a= 176.383ksi 

a:=-K0ax 

a = 182.6ksi 
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Ei := 

Ej =6.087x 10 

o:=k-   .8+ .2-tanh   5--EJ -4   ] 

G = 155380. lpsi 

.:=—  0.8+ 0.2-atanh   5- 
El l    k 

e = 6.087x 10 

E 

( 
0.8 + 0.2- tanh 

V 1>H1 
Es = 1.743x 10nPa 

Ej := E   1 - tanh (    E 
5—E-4 

10. Ej= 1.067x 10    Pa 

V= 2   U     JE 

vp = 0.332 

^ 

2s2-Er 

^ 
1 -v. 

Kl:=('-Ko + Ko2) 
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Et 
1 - — 

HA 

4-ll-vp  )-K} 

^[(^pH^pK] 
H2-=[(2-P)-(

l-2^}Ko] 

H,:=[l + H4 H2   -3-^1-Vp 

(       H2H3H4^ 
1 +  

VHi ; 

C3 = -0.83 

C2:= 1 

C]:= 

H3   H4 

Hl     J 

C2 = 0.321 

H2   H4 

H, 

Cj = 0.458 

Cn 

2 „ 2 
Ci^-^-Cs 

1 -v. 

C0 = 0.283 

3- 
Co     (      Q,\ 

C 
i; 

s2.R2 
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trial := 
cxj-L, 

trial = 0.413 

iterate on m until trial <= trial2 

m:= 1 

m 
tria!2:= j—(m+ 1) 

trial2= 1 

Pm:-PaaC0' 

rcc.L^ I'M f  Tim > 

V  7t-m J 
v°rLi; j 

p    = 4566.9psi 

p = 4561psi iterate on p until pm equals p 

Summary 

Axisymmetric Buckling 

pm = 4566.9psi 

Lobar Buckling 

pcr= 12139.3psi 

General Instability 

p„ = 9702.4psi 
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Society of Naval Architects and Marine Engineers 

Submersible Vehicle Systems Design 

ksi := lOOOpsi 

Input Section 

Lf:=3.25än 

L^llS^an 

R:=18.882n 

t := 0.33^n 

RQ:=R+ .5t 

Length between frames 

Length between bulkheads 

Radius of cylinder to centerline of shell 

shell thickness 

radius to outside of shell 

RQ= 19.051in 

E:=30000ksi 

a,, := 157ksi 

H := 0.3 

Ring Stiffeners 

tv:=0.12^n 
W 

depth :=2.315n 

bf:=1.552n 

d := 0.305n 

b2
:=bf-tw 

modulus of elasticity 

minimum yield stress of material 

Poisson's ratio 

thickness of web of ring stiffener 

total height of ring stiffener 

breadth of ring stiffener 

ring stiffener flange thickness 

breadth of ring stiffener minus the web thickness 

203 



c,:=.5. 

( 2 l\ 
tw- depth   + b2d 

V depth + b2d 

cj =0.558in 

first centroidal height of ring stiffener 

c2 := depth - cj second centroidal height of ring stiffener 

c2=1.757in 

h := c j - d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.253in 

R,. := R - .51 - c2 radius to centroid of ring stiffener 

R,.= 16.957in 

Ar := (tw-depth + b2-d) cross-sectional area of ring stiffener 

Ar = 0.729in2 

lr = IT   Vbf'cl  ~b2'h + Vc2 j moment of inertia of ring stiffener about its centroidal axis 

Ir=0.312in4 

Combined Plate and Ring Stiffener 

A  :=Lft area of effective plate 

Asp := A  + Ar area of plate and ring stiffener 

Hc := depth + t height of combined plate and ring stiffener 

B, := Lf - tw plate length minus the web thickness 
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clc:=.5| 
tw.Hc

2 + Brt2 + b2-d-(2-Hc-d) 

VHc + V + db2 
neutral axis of combined plate and ring stiffener 

from outer fiber of plate (Ro) 

clc = 0.937in 

Rc:=R+.5t-c]( radius to centroidal axis of combined ring stiffener and shell 

\ = 18.114in 

L:= 
3 L Lf clc3 " Bl(clc - l)3 + bf(Hc " clc)3 " (bf " tw)-("c - clc - d)3 

moment of inertia of combined plate and shell 

Ie= 1.946in 

a. Axisymmetric yielding 

B:=- 
V* 

Ar+tw-t 

B = 0.055 

9:=1 o|_12-U - n2) 
r T_ \ 

V2-Ry 

50t 

R 

9 = 1.659 

N:= 
cosh(e)-cos(9) 
sinh(e) + sin(e) 

N = 0.797 
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ß:= 
UN 

/        2       \ 
t 

5aMAr+vV 
R 

ß = 1.366 

H:=- 

( (Q 
3sinh| — Icosl — | + cosh 

^ 0^ 
sin| — 

2 

V sinh(e) + sin(e) 

H =-0.818 

/ 

a*k 
y      1 + H/0.85-B>i 

1 + ß 

py = 3863.5 lpsi 

b. lobar buckling 

Pb: 
2.42-E 

(.-,') 

t 

2R 
~ r 

2R --tef. 
pb = 1.341x 10 psi 

c. General Instability 

m:= 
71-R 

n:= 1 
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PcrlW -  n    , 
E-t 

R 

m 

2^ 
2     ,      m 

n   - 1 + — 
2y 

(n2 - l).E.I 

(2        lf 
•\n   + m / 

RLf 

Given 

n> 1 

ri2 := Minimiza pcrj, nj 

n2 = 1.654        n must be an integer 

n2int:=rou"d("2'0) 

n2int = 2 

^first • n2int100 if n2jm-l 

n2int ~~ *   otherwise 

"2first 

12prime" 

n2int 

n2int + l 

Vn2int+2y 

Pcrl( n2prim&) 

Pcr2 := 

Pcrlf n2prime, 

Pcrlf ^prim^ 

Pcr/^primeJ 

in(Pcr2) 

pcr= 8642. lpsi 
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Summary 

Axisymmetric Buckling 

py = 3863.5psi 

Lobar Buckling 

pb= 13410.8psi 

General Instability 

p    =8642.1psi 
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MIT 13A Professional Summer Submarine Design Trends 

PROGRAM TO COMPUTE SUITABILITY OF SUBMARINE DESIGN PARAMETERS. 

Ref: "Hull Material Trade Off Study", D Fox, Jan 94 

Define input parameters: 

ksi = lOOOpsi 

Global Variable Inputs: 

e = 0.0-in Eccentricity 

Material: 

Gy = 15700Q>si Yield Strength 

E=3000Cksi Modulus of Elasit 

v =0.3 Poisson's Ratio 

Geometry: 

R= 18.882n shell radius 

D = 2R shell diameter 

Lf = 3.256n frame spacing 

Ls = 115.532n bulkhead spacing 

tp = 0.337in shell thickness 

tf = 0.305n flange tickness 

Wf = 1.552n flange width 

tw = 0.121n web thickness 

hw = 2.01in web height 

209 



Compute areas: 

Ri := R - — 
2 

Frame Radius 

R] = ]8.713in 

Frame flange, web area: 

Af := tf-Wf 

A\v '•- t\v"h\v 

A := Af + Aw Frame Area = Flange + Web 

A = 0.729in 

PARTI  SHELL YIELDING 

B: 
twtp 

A + twtp 
Area ratio 

B = 0.055 

0 :=Lf >(-v')' 

(R >P)2 . 

Slenderness parameter: 

9 = 1.659 

N 
cosh(e)-cos(e) 

sinh(e) + sin(e) 
Deflection coefficient: 

ß:= 
2-N 

A + tw-tp 
■(,-v2) 

0.25   i— 
Frame flexibility parameter: 

ß = 1.366 
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r:= 
1--I-B 

v L_ 
1 + ß 

Frame deflection parameter: 

r= 0.336 

sinh 

HM:=-2- 

cos I — I + cosh 
V2;       V2 

sin (- 
,2 

sinh(0) + sin(e) 
Bending effect (mem): 

HM = -0.926 

0.5 sinh 

HE:=-2- 

K:= 

HE = 0.391 

sinh(e) - sin(e) 

sinh(e) + sin(e) 

(1 cos (-) 
,2, 

(Q\    (e 
i cosh | — I-sin 
V2 )      V 2 

sinh(e) + sin(e) 
Bending effect (bend): 

Bending efffect near frame: 

P crl := 

PQ *- 1 psi 

P, <- 1000 psi 

P2 <r- 3000 psi 

delta <— 5 psi 

limit <— 1 psi 

conv <— 1 psi 

j«-0 

while j < 200 

for ie 0..2 

'«so' 

-P.R 
——[l +T-(HM+ vH£i] 
tp 

P.R 
— • [l + r|HM-vHEt] 
t n 

-P.R 
,< —(OJ + r-HEl 

-P.R 
cxxsi< —(0.5-r-HE) 

ü <M<fo' 

riMfi< 

-P.R 
l 

-P.R 
l 

i -r- 

l-r 

1 + V 

1 - V 

3    > 
0.5 

1-v2, 

v0.5 

I-*2/ 
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°xxfo' 

0»fi< 

-PR 
l 

0.5 -r 

-P,R 
1 

0.5 + r 

f 3 >| 

\l- v J 

(    3    ^ 

0.5 

0.5 

\\-v ) 

• sy' 

'°Wso> 

°Wsi 

° xxso 

a xxsi 

a«fo 

öWfi 

°>ofo 

^° X3tfl , 

°1 

°2 

'sy0 

sy2 

° 3 <~ o Sy3 

a 4 <- a sy? 

°SYM<- V°l   -01-02 + 02) 

J 

f     2 2V 
°SYF<-Va3   -0304 + 04 J 

a sy <- n>ax 
OSYM 

OSYF 

stress. <- o sy 

test. <— 'fy - a sy' 

testD 

conv 

test 

\\ 

shel<- 

dav<- 
1 

conv 

break if  Istress. - f „I < limit 

PQ «- Pj   if sheldav>0 

P2<- Pj   if sheldav<0 

pi^-po + 

j<-j+ 1 

'W 

out, ■j-1 

out 
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Perl = 

f 3 
3.712x 10 

15 

Pcrit:=Pcrl0lPsi 

Pcrit = 3712psi 

PART 2 LOBAR BUCKLING 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

Collapse pressure: 

2.42E- 

PCLB:= 

ft ^5 

D v^y 
^Lf f^t ^0-75 

0.45 ■(.-vf 

PcLB=13410.8psi 

PART 3 GENERAL INSTABILITY 

Corrected Bryant Formula (1954) for better model test correlation 

Pressure loading is: 

P:=p-g-DfSFgi 

P= 1.674x 103 psi 

Compute effective frame spacing: 

(R\ 
y:= 

2-E 
\ff^) 

\1PJ 

7 = 0.145 

213 



Compute clear length: 

Lc := Lf - tw 

n] := 0.5-^ 1 - y 

n] =0.462 

Web thickness: 

n2 := 0.5A/ 1 + y 

n2 = 0.535 

tw = 0.127in 

*-f cosh(ni-e)   -cos(n2e) 

cosh(n|e)sinh(ni-e)      cos(n2e)sin(n2e) 
nl n2 

F] = 0.959 must be less than 1.00 

Fl is almost a linear decreasing function for pressures from 1 to 10000 psi with an average value 

of 0.96. This will be used in the following analysis as the pressure is the unknown and therefore 

the above equations cannot be directly used. 

F! :=0.96 

Effective shell plate length: 

Lgff^Lc-F] + tw 

Leff=3.131in 

Theoretical critical lobe number values are:   i := o.. 2 

Aeff := Leff tp    Effective plate area: 

Aeff = 1.055in2 
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Circumferential Lobes 

n := 

r2\ 
3 

V4; 

Longitudinal Lobes: 

m:= 7T- 
R_ 

m=0.513 

Af 

yna: V 
•Aeff 

Aeff + Aw + Af 

Frame-plate neutral axis (ref web centre+ toward flange): 

-0.387in 

Uses Parallel Axis Theorm: Icor = I + Ad2 

Moments of inertia for plate,flange,web: 

IP:= 

Leff-y 
12 

Iw:= 
t\v'"vv 

12 

Wf-tf 

12 

Ipcor '■- *p + Aeff 
,      2      , 

+ Yr 

Kvcor := l\v + ■^■w'^ynaj 

ftf+hw ^ 
Ifcor := If + Af I yna 
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Total: 

leff:- Ipcor + 'wcor + ho Moment of Inertia corrected for neutral axis. 

Ieff=1.92in4 

The critical Elastic General Instability pressure is: 

P-^, •= 
E-tp 4 

m [("H EIeff 

''      R 

_(ni) ~l + T_ i"i)2 + m2_ 

+ 
2 

R3Lf 

Min Pressure: 

(         A 8.536x 10 
f2> 

PcGI = 2.107x 104 psi n := 3 

^3.942x 104
y 

K4J 

pcGI •"= min(PcGI) 

PCGI = 8535.8psi 

ngi:=2 

Summary 

Axisymmetric Buckling 

Pcrit = 37I2psi 

Lobar Buckling 

PcLB = 13410. Spsi 

General Instability 

PCGI = 8535.8psi 

ngi=2 
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Analytic Solution t 

Definitions 

ksi:= 6.894757106Pa 

E := 3000(ksi Modulus of Elasticity 

R:= 18.882n Radius of cylinder to centerline of shell 

D := 2R Diameter of cylinder 

CT   := 157ksi Yield strength 

L:=3.256n Length of supported cylinder 

Lfr-^llSttln Distance between bulkheads 

H:=.3 Poison's ratio for Fe/Steel 

t:=0.337in Shell thickness 

Ring Stiffeners 

t,„:=0.127n 
W 

thickness of web of ring stiffener 

H:=2.315n height of ring stiffener 

b:=tw faying width of stiffener (from P&S for I beam stiffener) 

bf:= 1.552n breadth of ring stiffener 

b2:=bf-tw breadth of ring stiffener minus the web thickness 

d := 0.305n ring stiffener flange thickness 

Lbnash := L ~ bf distance from flange edges 
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c, := .5 

2 2^ 
twH   +b2d

Z 

V   w " • "l " J VH + b2d 

Cj =0.558in 

first centroidal height of ring stiffener 

c2:=H-c, second centroidal height of ring stiffener 

c2= 1.757in 

h :=c, - d distance from centroid of ring stiffener to nearest edge of flange 

h = 0.253in 

R,. := R - .5-t - c2 radius to centroid of ring stiffener 

R,.= 16.957in 

Ar := (twH + b2d)        cross-sectional area of ring stiffener 

Ar = 0.729in 

V=l 3 j\bfcl  ~b2h  +Vc2j moment of inertia of ring stiffener about its centroidal axis 

Ir=0.312in 

Aeff:=A,-| — 
r    «r 

effective area of stiffener eqn [24a] from P&S 

. 2 
Aeff =0.811 in 

veff 
a := 

Lt 
ratio of effective frame area to shell area eqn [62] P&S 

a = 0.739 

-I ratio of faying width to frame spacing eqn [62] P&S 

ß = 0.039 
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Combined Plate and Ring Stiffener 

v= = L-t 

Asp :=Ap + Ar 

Hc:= = H+t 

Hc = = 0.221ft 

B]:= L-tw 

area of effective plate 

area of plate and ring stiffener 

height of combined plate and ring stiffener 

plate length minus the web thickness 

clc:=.5 
VHc2 + Brt2 + b2d(2Hc-d) 

VHc + Bll + db2 

clc = 0.937in 

Rc:=R+.5t-c1( 

Rc= 18.114in 

neutral axis of combined plate and ring stiffener 

from outer fiber of plate (Ro) 

radius to centroidal axis of combined ring stiffener and shell 

L:=- L-Clc3 - Br(clc - f + bf(Hc - clc)3 " (bf " lw)(Hc - clc - d)3 

moment of inertia of combined plate and shell 

Ie= 1.946in 

a. Buckling of unreinforced shells 

von Mises bucking pressure: 

n := l    guess at number of waves around the circumference 
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Purlf") :=   ~ 
Ej 

R 
2      Jit-R^ 

n   + .5 

7tR 

J 

2 
n   + 

7t-R 

L 

(. - J) \2- M /J 

Y 2    ( it-R 
n   + 

Given 

n> 1 

rij :=Minimizapur],nj 

nj = 10.14        n must be an integer 

n j |nt := round (n j, 0J 

n]int=10 

1 prime3 

"lint 

lint 

nlint+ ' 

V n 1 int + 2 

Purl 

Purl(nlprim^) 

Purl fnl prime,) 

Purl^lprimej 

Purl^lprimej 

pur:=min(purI) 

4 
pur = 1.214x 10 psi 
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b. Axisymmetric Buckling 

Pcab: y <- 0 

limit-«— lOpsi 

test <— Opsi 

conv *- lpsi 

while j < 20 

1 
ii<--V'-r 

Tl2<--Vl + Y 

F, <  
coshltij'9)   -cosfr^f 

coshlr] j-GlsinhlTj j-9)      coslr^'OVsinir^-S 

1l 12 

cosh (Tij-SJ-sinlti2-8)      sinhlr] |-6VCOS(T|2'6 

12 1l 

coshfTi j-9J-sinhlrt j-9j      cos (r| 2'0 l-sin( r] 2^ 

11 12 

cos!r|2-9|-sinlri2-8|      coshlr] j-9j-sinhlr] j-l 

12 1l 

2   coshlr] j-6]-sinhlri j-9 1      coslr|2"8)-sin(ri2-9 

H 12 

coshlr] ]-9j-sinlr]2-9)      sinh(r| j-9 Jcoslr]2-9 

12 1l 

2   coshlr] j-9|-sinh[r] ]-9l      cosln^^ l-sinln^^ 

1l 12 

<x + ß + (l-ß)-F, 

denoml *- A F2
2 + F2F4(l - 2-n)- 

0.91 

U.V 
+ F4 \l - u + u 

2  f   0.91 

1-U 

denom2 <— | — |-A- 

Pc2- 

F2-M-F4 
0.91 

1-H 

MI 

J^ + denoml - denom2 

break   if   p 2 - test   < limit 

y^.[£Uv)].f« 
2E 

test <- pc2 

Pc2 
out_ 

conv 

out   <- j 
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Pcab I    2     , 

Paxiy^PcabQ-'P5' 

Paxiy = 4080.3psi 

c. Asymmetric Collapse (Lobar buckling) 

Windenberg Approx of Von Mises (1933) 

Assumes n lobes = Pi*D/L 

Collapse pressure: 

2.42-E- 

PcLB:= 
D 

2.5 

o.ji).(,vr 
^D 

pcLB= 13410.8psi 

d. General Instability of shells and rings 

*:= 
7I-R 

n:= 1 

PcGl(n):=Y7 
(n2-,).E, 

2    ,     X 
n   - 1 + — .(„2 + rf      R3L 

Given 

n> 1 
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n2 := Minimiz^pcQj,nj 

n7 = l .654        n must be an integer 

n2int:= round (n2,0) 

^int: 

12prime' 

Sinf1^ 
n2int 

n2int + ] 

Vn2int+2 

^PcG(n2prim^A 

Pcsi2 :- 

PcG/n2primej 

PcGlfn2prim^ 

PcGlTn2pr ne. 

Pcgibryant :~ m'lr\Pcgi2! 

Pcgibryant = 8642x ^Psi 

Summary 

Lobar Buckling 

pcLB= 13410.8psi 

Axisymmetric Buckling 

Paxiy=4080-3Psi 

General Instability 

Pcgibryant = 8642.1psi 

^int: 
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